



Edition 2014 / 15

Semi-Finished Engineering Plastic Products

| Ensinger<br>stock shapes       | Index<br>Contact<br>Foundation for quality products<br>Materials                          | <ul> <li>4 Technical service</li> <li>6 Quality and expertise</li> <li>8 Added value for you</li> <li>9</li> </ul>                               | 10<br>11<br>12             |           |
|--------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|
| TECAFORM                       | () \$ - 250 mm () \$                                                                      | 5 - 150 mm _ ©                                                                                                                                   | 14 Magazina<br>14          |           |
| TECAMID                        |                                                                                           | 5 - 100 mm _ (○                                                                                                                                  | 20<br>LECAMID              |           |
| TECAST<br>TECARIM              |                                                                                           | 8 - 200 mm _ ⊙                                                                                                                                   | 26<br>LECAST               | TECARIM   |
| TECADUR<br>TECAPET             | ①                                                                                         | 8 – 100 mm                                                                                                                                       | TECADUR 25                 | TECAPET   |
| TECANAT                        |                                                                                           | 10 - 100 mm                                                                                                                                      | TECANAT 95                 |           |
| TECAFLON                       | ()                                                                                        | 1 - 100 mm                                                                                                                                       | TECAFLON                   |           |
| TECASON<br>TECAPEI             |                                                                                           | 10 - 80 mm                                                                                                                                       | 42 Street                  | TECAPEI   |
| TECATRON                       |                                                                                           | 10 - 70 mm                                                                                                                                       | 45 TECATRON                |           |
| TECAPEEK                       |                                                                                           | 5 - 100 mm _ ⊙                                                                                                                                   | 48<br>TECAPEEK             |           |
| TECATOR                        |                                                                                           | 1 – 40 mm                                                                                                                                        | TECATOR                    |           |
| TECASINT                       |                                                                                           | 5 – 100 mm                                                                                                                                       | 25<br>TECASINT             |           |
| TECAFINE<br>TECANYL<br>TECARAN | ①     10 - 200 mm     ①     〕     ①                                                       | 5 – 100 mm                                                                                                                                       | Others E9                  |           |
| Special materials              | Food technology<br>Medical technology<br>Semiconductor technology<br>Aerospace technology | <ul> <li>66 Electrics and Electronics</li> <li>70 Sliding applications</li> <li>79 Calendered plates</li> <li>82 Compression moulding</li> </ul> | 84<br>86<br>88<br>90<br>90 | materials |
| Appendix                       | Product handling<br>Processing of plastics<br>Machining guidelines                        | 92Material standard values94Chemical resistance95Notes on the product range                                                                      | 96 96<br>106 108 40        |           |

# Index

| Polymer  | Ensinger Name           | Raw material group                                                    | 6        | $\bigcirc$ | 6      |
|----------|-------------------------|-----------------------------------------------------------------------|----------|------------|--------|
|          |                         |                                                                       | page     | page       | page   |
| ABS      | TECARAN ABS             | Acrylonitrile-butadiene-styrene-graft copolymer                       | 64       | 65         |        |
| E/CTFE   | TECAFLON ECTFE          | Ethylene/Chlorotrifluorethylene                                       |          |            |        |
| E/TFE    | TECAFLON ETFE           | Ethylene Tetrafluoroethylen copolymer                                 | 40       |            |        |
| PA 6     | TECAMID 6               | Polyamide 6                                                           | 21       | 23, 85     | 25     |
| PA 6     | TECAMID 6 MO black      | Polyamide 6, with MoS <sub>2</sub> (black)                            | 21       | 23         |        |
| PA 6     | TECAMID 6 blue          | Polyamide 6 (blue)                                                    | 68       | 69         |        |
| PA 6     | TECAMID 6 ID blue       | TECAMID 6, detectable filler                                          | 68       | 69         |        |
| PA 6     | TECAMID 6 GF30 black    | Polyamide 6, glass fibre (black)                                      | 22       | 24         |        |
| PA 6-3   | TECAMID 6/3 TR natural  | Polyamide 6-3 (transparent)                                           |          |            |        |
| PA 6 C   | TECAST T                | Cast Polyamide 6                                                      | 27       | 28         | 30, 31 |
| PA 6 C   | TECAST T MO black       | Cast Polyamide 6, MoS <sub>2</sub> (black)                            | 27       | 28         |        |
| PA 6 C   | TECAST L                | Cast Polyamide 6, oil                                                 | 27       | 28         |        |
| PA 6 C   | TECAGLIDE green         | Cast Polyamide 6, lubricated                                          | 27       | 28         |        |
| PA 6 C   | TECARIM 1500            | Cast Polyamide 6, elastomer                                           | 29       | 29         |        |
| PA 11    | TECAMID 11              | Polyamide 11                                                          |          |            |        |
| PA 12    | TECAMID 12              | Polyamide 12                                                          | 21       | 23         |        |
| PA 46    | TECAMID 46 red brown    | Polyamide 46 (red brown)                                              |          | 24         |        |
| PA 66    | TECAMID 66              | Polyamide 66                                                          | 21       | 23, 85     |        |
| PA 66    | TECAMID 66 HI brown     | Polyamide 66, heat-stabilized                                         | 21       | 23         |        |
| PA 66    | TECAMID 66 GF30 black   | Polvamide 66. glass fibre (black)                                     | 22       | 24         |        |
| PA 66    | TECAMID 66 CF20 black   | Polvamide 66. carbon fibre (black)                                    | 22       | 24         |        |
| PA 66    | TECAMID 66 SF20         | Polyamide 66. aramide fibre                                           |          |            |        |
| PA 66    | TECAMID 66 LA natural   | Polyamide 66, solid lubricant                                         | 21       | 23         |        |
| PA 66    | TECAMID 66 MO black     | Polyamide 66, with MoS. (black)                                       |          | 23         |        |
| PA 66    | TECAMID 66/X GE50 black | Polyamide-conolymer glass fibre (black)                               |          |            |        |
| ΡΔΙ      |                         | Polyamidimide                                                         | 56       | 56 67      |        |
| ΡΔΙ      |                         | Polyamidimide granhit PTFF                                            | 50       | 56, 55     |        |
|          |                         |                                                                       |          | 50         |        |
| DRT      |                         | Polybutylene terepithalate                                            | 24       | 25         |        |
|          |                         | Polycarbonato (transnaront)                                           |          | 20 OE      |        |
|          |                         | Polycarbonate (transparent)                                           | 57       | 20,03      | 70     |
|          |                         | Polycarbonate, for semiconductor technology                           | דכ       | ەد         | 75     |
|          |                         |                                                                       | 57<br>حج | 38<br>77   |        |
|          |                         |                                                                       | / 5      | //         |        |
|          |                         |                                                                       |          |            |        |
|          |                         |                                                                       |          |            |        |
| PE-HMVV  |                         | High-molecular weight polyethylene                                    |          |            |        |
| PE-UHMVV |                         | Ultra-high-molecular weight polyethylene                              |          |            |        |
| PEEK     |                         | Polyetheretherketone                                                  | 49       | 51         | 52     |
| PEEK     | IELAPEEK black          | Polyetheretherketone (black)                                          | 49       |            |        |
| PEEK     | IELAPEEK bright red     | Polyetheretherketone (bright red)                                     | 54       | 54         |        |
| PEEK     | TECAPEEK GF30           | Polyetheretherketone, glass fibre                                     | 50       | 51         |        |
| PEEK     | TECAPEEK CF30 black     | Polyetheretherketone, carbon fibre (black)                            | 50       | 51         |        |
| PEEK     | TECAPEEK PVX black      | Polyetheretherketone, carbon fibre, PTFE, graphite (black)            | 50       | 51         | 53     |
| PEEK     | TECAPEEK ELS nano black | Polyetheretherketone, CNT                                             | 54       | 54         |        |
| PEEK     | TECAPEEK blue           | Polyetherether ketone (blue)                                          | 68       | 69         |        |
| PEEK     | TECAPEEK TF10 blue      | Polyetheretherketone, PTFE (blue)                                     | 68       |            |        |
| PEEK     | TECAPEEK ID blue        | Polyetheretherketone, detectable filler                               | 68       | 69         |        |
| PEEK     | TECAPEEK CMP natural    | Polyetherether ketone, for semiconductor technology                   |          |            | 79     |
| PEEK     | TECAPEEK SE natural     | Polyetheretherketone, for semiconductor technology                    |          |            | 79     |
| PEEK     | TECAPEEK CMF            | Polyetheretherketone, ceramics                                        | 54       | 54         |        |
| PEEK     | TECAPEEK TS grey        | Polyetheretherketone, mineral filler                                  | 54       | 54         |        |
| PEEK     | TECAPEEK PNT black      | Polyetheretherketone, glass fibre, CNT                                | 54       | 54         |        |
| PEEK     | TECAPEEK MT             | Polyetheretherketone, for medical technology                          | 72       | 76         |        |
| PEEK     | TECAPEEK MT XRO         | Polyetheretherketone, for medical technology                          |          |            |        |
| PEEK     | TECAPEEK MT CF30 black  | Polyetheretherketone, carbon fibre (black),<br>for medical technology | 73       | 76         |        |

| Polymer   | Ensinger Name              | Raw material group                                                        | 6      | $\bigcirc$ | 6    |
|-----------|----------------------------|---------------------------------------------------------------------------|--------|------------|------|
|           |                            |                                                                           | page   | page       | page |
| PEEK      | TECAPEEK MT CLASSIX white  | Polyetheretherketone, for medical technology                              | 73     |            |      |
| PEEK      | TECATEC PEEK MT CW50 black | Polyetheretherketone, carbon fibre,<br>composite, for medical technology  |        |            |      |
| PEKK      | TECATEC PEKK MT CW60 black | Polyetherketoneketone, carbon fibre,<br>composite, for medical technology |        |            |      |
| PEK       | TECAPEEK HT black          | Polyetherketone                                                           | 49     | 51         |      |
| PEKEKK    | TECAPEEK ST black          | Polyetherketoneetherketoneketone                                          | 49     | 51         |      |
| PEI       | TECAPEI                    | Polyetherimide                                                            | 43     | 44         |      |
| PEI       | TECAPEI MT                 | Polyetherimide, for medical technology                                    |        |            |      |
| PEI       | TECAPEI GF30               | Polyetherimide, glass fibre                                               | 43     | 44         |      |
| PES       | TECASON E natural          | Polyethersulphone                                                         | 43     | 44         |      |
| PES       | TECASON E GF30 black       | Polyethersulphone, glass fibre                                            |        |            |      |
| PET       | TECAPET white              | Polyethylene terephthalate                                                | 33     | 35         |      |
| PET       | TECAPET black              | Polyethylene terephthalate (black)                                        | 33     | 35         |      |
| PET       | TECAPET TF grey            | Polyethylene terephthalate, PTFE                                          | 33     | 35         |      |
| PET       | TECADUR PET                | Polyethylene terephthalate                                                |        | 85         |      |
| PET       | TECADUR PET CMP natural    | Polyethylen terephthalate, for semiconductor technology                   |        |            | 79   |
| PI        | TECASINT 1000              | Polyimide                                                                 | 59, 60 | 61,62      |      |
| PI        | TECASINT 2000              | Polyimide                                                                 | 59     | 61         |      |
| PI        | TECASINT 4000              | Polyimide                                                                 | 59     | 61         |      |
| PI        | TECASINT 5000              | Polyimide                                                                 | 59     | 61         |      |
| PI        | TECASINT 8000              | Polyimide                                                                 | 59     | 61         |      |
| PMP       | TECAFINE PMP natural       | Polymethyl pentene (transparent)                                          | 64     | 65         |      |
| POM-C     | TECAFORM AH natural        | Polyoxymethylene copolymer                                                | 15     | 17, 18     | 19   |
| POM-C     | TECAFORM AH black          | Polyoxymethylene copolymer (black)                                        | 15     | 17, 18     |      |
| POM-C     | TECAFORM AH GF25           | Polyoxymethylene copolymer, glass fibre                                   | 16     | 17, 18     |      |
| POM-C     | TECAFORM AH LA blue        | Polyoxymethylene copolymer, solid lubricant (blue)                        |        |            |      |
| POM-C     | TECAFORM AH ELS black      | Polyoxymethylene copolymer, conductive carbon                             | 15     | 17, 18     |      |
| POM-C     | TECAFORM AH SD natural     | Polyoxymethylene copolymer, antistatic agent                              |        | 18         |      |
| POM-C     | TECAFORM AH blue           | Polyoxymethylene copolymer (blue)                                         | 68     | 69         |      |
| POM-C     | TECAFORM AH ID             | Polyoxymethylene copolymer, detectable filler                             | 68     | 65         |      |
| POM-C     | TECAFORM AH MT             | Polyoxymethylene copolymer, for medical technology                        | 75     |            |      |
| РОМ-Н     | TECAFORM AD natural        | Polyoxymethylene homopolymer                                              | 15     | 17, 18     |      |
| РОМ-Н     | TECAFORM AD black          | Polyoxymethylene homopolymer (black)                                      | 15     | 17, 18     |      |
| POM-H     | TECAFORM AD AF natural     | Polyoxymethylene homopolymer, PTFE                                        | 15     | 17, 18     |      |
| PP        | TECAFINE PP                | Polypropylene homopolymer (natural, grey)                                 |        |            |      |
| PP        | TECAPRO MT                 | Polypropylene, for medical technology                                     |        | 76         |      |
| PP        | TECAPRO AM natural         | Polypropylene, antimicrobic                                               |        | 76         |      |
| PPE       | TECANYL 731 grey           | Polyphenylene ether                                                       | 64     | 65         |      |
| PPE       | TECANYL GF30               | Polyphenylene ether, glass fibre                                          | 64     | 65         |      |
| PPE       | TECANYL MT                 | Polyphenylene ether, for medical technology                               | 75     |            |      |
| PPS       | TECATRON                   | Polyphenylene sulphide                                                    | 46     | 47         |      |
| PPS       | TECATRON GF40              | Polyphenylene sulphide, glass fibre                                       | 46     | 47         |      |
| PPS       | TECATRON PVX black         | Polyphenylene sulphide, carbon fibre, PTFE, graphite (black)              | 46     | 47         |      |
| PPS       | TECATRON CMP natural       | Polyphenylene sulphide, for semiconductor technology                      |        |            | 79   |
| PPS       | TECATRON SE natural        | Polyphenylene sulphide, for semiconductor technology                      |        |            | 79   |
| PPSU      | TECASON P                  | Polyphenylene sulphone                                                    | 43     | 44         |      |
| PPSU      | TECASON P blue             | Polyphenylene sulphone (blue)                                             |        |            |      |
| PPSU      | TECASON P MT               | Polyphenylene sulphone, for medical technology                            |        | 76         |      |
| PPSU      | TECASON P MT XRO           | Polyphenylene sulphone, for medical technology, contrast agent            | 74     | -          |      |
| PPSU      | TECASON P VF               | Polyphenylene sulphone, vacuum formable                                   |        | 87         |      |
| PSU       | TECASON S                  | Polysulphone                                                              | 43     | 44         |      |
| PSU       | TECASON S GF30             | Polysulphone, glass fibre                                                 |        |            |      |
| PTFE      | TECAFLON PTFE natural      | Polytetrafluoroethylene                                                   | 40     | 41         |      |
| PTFE      | TECAFLON PTFE GF25 natural | Polytetrafluoroethylene, glass fibre                                      |        |            |      |
| PTFE + PI | TECASINT 8001 yellow-brown | Polytetrafluoroethylene + Polyimide                                       |        |            |      |
| PVDF      | TECAFLON PVDF              | Polyvinylidene fluoride                                                   | 40     | 41         |      |
| PVDF      | TECAFLON PVDF ELS          | Polyvinylidene fluoride, conductive carbon                                |        |            |      |

# Consulting services - individual and business sector oriented

#### Management

Ralph Pernizsak

General Manager Stock Shapes Tel. +49 7032 819 0 Fax +49 7032 819 100 info@ensinger-online.com



Nina Finkbeiner Head of Product Management Stock Shapes Tel. +49 7032 819 0 Fax +49 7032 819 100 info@ensinger-online.com



Martin Baras Head of Marketing and Sales Stock Shapes Tel. +49 7032 819 0 Fax +49 7032 819 100 info@ensinger-online.com



Robert Müller Head of Operations Stock Shapes Tel. +49 7032 819 0 Fax +49 7032 819 100 info@ensinger-online.com

**Technical Services** 

Holger Werz Applications Engineering Tel. +49 7032 819 101 Fax +49 7032 819 427 techservice.shapes@de.ensinger-online.com



Sebastian Roller Applications Engineering Tel. +49 7032 819 116 Fax +49 7032 819 427 techservice.shapes@de.ensinger-online.com



Markus Porn Head of TECASINT Tel. +49 151 1082 2417 Fax +49 6135 705 5612 m.porn@de.ensinger-online.com



Markus Edelbauer Head of Sales TECASINT Tel. +49 151 1082 2420 Fax +49 7813 931 6781 m.edelbauer@de.ensinger-online.com

Björn Ühlken

Industry Segment Manager

Tel. +49 7032 819 135

Fax +49 7032 819 190

Axel Reinheimer

#### Industry Expertise



Alexander Stehle Industry Segment Manager Tel. +49 7032 819 216 Fax +49 7032 819 190 a.stehle@de.ensinger-online.com



Werner Mayer Area Sales Specialist Tel. +49 171 2270 437 Fax +49 89 9607 1805 w.mayer@de.ensinger-online.com



Melanie Balkenhol Internal Sales Specialist Tel. +49 7032 819 289 Fax +49 7032 819 432 m.balkenhol@de.ensinger-online.com



Area Sales Specialist Tel. +49 171 2270 434 Fax +49 6150 1079 886 a.reinheimer@de.ensinger-online.com

b.uehlken@de.ensinger-online.com



Klaus Uttenweiler Internal Sales Specialist Tel. +49 7032 819 281 Fax +49 7032 819 432 k.uttenweiler@de.ensinger-online.com



Bernd Röhm Internal Sales Specialist Tel. +49 7032 819 643 Fax +49 7032 819 432 k.uttenweiler@de.ensinger-online.com

Sales Germany



Michael Pinkerneil Area Sales Manager Tel. +49 2947 9722 40 Fax +49 2947 9722 77 m.pinkerneil@de.ensinger-online.com



s.maag@de.ensinger-online.com

Stefan Maag

Head of Internal Sales Tel. +49 7032 819 0

Fax +49 7032 819 100



Dominik Grohs Area Sales Manager Tel. +49 171 2270 440 Fax +49 7032 819 432 d.grohs@de.ensinger-online.com

Nicole Thöne Team Leader Internal Sales Tel. +49 2947 9722 40 Fax +49 2947 9722 77 n.thoene@de.ensinger-online.com

### Sales Germany



Kathrin Hesse Internal Sales Tel. +49 2947 9722 90 Fax +49 2947 9722 77 k.hesse@de.ensinger-online.com



Ismail Yüce Team Leader Internal Sales Tel. +49 7032 819 149 Fax +49 7032 819 432 i.yuece@de.ensinger-online.com



Ivana Hrnjkas Internal Sales Tel. +49 7032 819 110 Fax +49 7032 819 432 i.hrnjkas@de.ensinger-online.com



Inge Tobolla Internal Sales Tel. +49 7032 819 171 Fax +49 7032 819 432 i.tobolla@de.ensinger-online.com



Julia Maier Internal Sales Tel. +49 7032 819 204 Fax +49 7032 819 432 j.maier@de.ensinger-online.com

Sales Export



**Torge Florman** Area Sales Manager Tel. +49 7032 819 649 Fax +49 7032 819 190 t.flormann@de.ensinger-online.com



**Cerhard Zaiser** Area Sales Manager Tel. +49 7032 819 266 Fax +49 7032 819 190 g.zaiser@de.ensinger-online.com



Jelena Parić Internal Sales Tel. +49 7032 819 228 Fax +49 7032 819 190 j.paric@de.ensinger-online.com



Mustafa Gürkan Internal Sales Tel. +49 7032 819 197 Fax +49 7032 819 190 m.guerkan@de.ensinger-online.com





Heinz-Peter Gauss Internal Sales Tel. +49 7032 819 162 Fax +49 7032 819 432 h.gauss@de.ensinger-online.com



Ursula Fischer Internal Sales Tel. +49 7032 819 177 Fax +49 7032 819 432 u.fischer@de.ensinger-online.com





Andreas Fauß Internal Sales Tel. +49 7032 819 151 Fax +49 7032 819 432 a.fauss@de.ensinger-online.com

Katharina Stuka Internal Sales Tel. +49 7032 819 255 Fax +49 7032 819 432 k.stuka@de.ensinger-online.com









Fax +49 7032 819 190 n.weber@de.ensinger-online.com Ute Schäfer

Internal Sales Tel. +49 7032 819 126 Fax +49 7032 819 190 u.schaefer@de.ensinger-online.com



# A solid foundation for quality products

Stock shapes made of technical plastics form the basis for a wide range of new applications. Polymer materials are a key driving force for technological progress. Plastics have a whole array of benefits to offer and in many cases can effectively replace metals or ceramics. And what's more: They often provide the only alternative when it comes to the implementation of unusual technical applications – which makes them a true pacemaker for innovation. Engineering and high-performance plastics are now commonly used in every key field of industry.

Ensinger offers extruded, cast and pressed round rods, plates and tubes in a wide range of dimensions and colours. We keep a permanent stock of popularly used thermoplastics and their most important modifications always on hand in our European warehouse in Nufringen. We also manufacture semi-finished products specifically to customer requirements. Our stock shapes are cut and machined to individual customer orders with close tolerances guaranteed. Finished part manufacturers who require only minimal quantities of stock shapes for a small production run or to produce a prototype derive just as much benefit from our cutting and surface machining services as do large-scale buyers. By planing, grinding and contour planing we are able to achieve wide-ranging high-precision solutions.

And our customers may rest easy in the assurance of compliance with stringent quality standards every time. Strict guidelines and the deployment of a skilled workforce safeguard all the individual processes, from incoming raw materials right through to the finished product.



Ensinger covers the entire value chain, from compounding to machining. Additional process technologies, such as profile extrusion, injection and polyamide casting, also belong to our portfolio.

# Materials for every conceivable application

Our portfolio contains standard, engineering and high performance plastics with property profiles to suit an enormous range of applications:

# Standard plastics

This category includes polyolefins such as PMP, PP and PE. These materials offer an ideal characteristic profile for a wide range of standard requirements at temperatures up to 100 °C.

# **Engineering plastics**

Engineering plastics can be used continuously at temperatures of up to 100 °C or 150 °C. Polyamides (PA), polyacetals (POM) and polyester (PET, PC) which also belong to this group are referred to as technical thermoplastics. These materials demonstrate good mechanical characteristics and a high degree of chemical and wear resistance. Material blends and modifications permit product characteristics to be optimized across a broad range to suit different applications. Engineering plastics consequently cover a wide spectrum of different properties.

As the class designation indicates, easy-to-machine engineering plastics are frequently used to produce technical components for applications in the automotive, manufacturing and engineering industries, in electronic and electrotechnical applications and in the food, transport or household appliances sector.

# High performance plastics

The success achieved by high-performance plastics is based on a combination of material benefits which are brought to bear even at raised temperature levels. These include, in particular, good mechanical properties supported by extreme chemical resistance. The long-term service temperatures of materials such as PEEK, PPS and PSU are between 160 °C and 260 °C, and for polyimides are significantly higher. Other important benefits include radiation resistance, excellent fire resistance (self extinguishing) and good electrical properties. Using special additives, thermal dimensional stability and rigidity can be enhanced, tribology improved, or electrical conductivity adjusted.

High-performance plastics are used wherever customary plastics reach the limits of their technical properties or where a customer wishes to save weight by replacing metal with plastic.



# Our experts will be pleased to offer their advice

# Material selection

It is only with the correct material that a design can achieve its required functionality, safety and service life. It is primarily, the application conditions that determine the selection of materials. Alongside the planned application, the search for a suitable plastic also takes into account all further developmental detail requirements.

### Technical application service

Material experts can provide users with a qualified material recommendation by comparing the available information with the technical data and industry-specific experience data. During the component design phase, the suitability of a plastic can be reviewed at an early stage with the aid of calculation tools. However, any selected material must be confirmed by practical testing. In close coordination with your specific requirements, our experienced material specialists will find the most suitable plastic and the right process technology to fit your needs.

If you have questions regarding material selection or machining recommendations, our technical service at the headquarters in Nufringen will be happy to help you. You can reach the application engineers by telephone at +49 7032 819 101 or e-mail at:

techservice.shapes@de.ensinger-online.com



Critieria for optimum material selection





# Quality and expertise

# Supply reliability

An efficient system of stock management ensures that our branches and trading partners receive all their deliveries – whether extremely high quantities or special one-off supplies – with the shortest possible delay or to schedule. The expansion at the Nufringen headquarters connects semifinished goods production and logistics more closely to each other. The modern high-rack warehouse has 2,500 storage spaces, and the fully automatic conveyor system permits shelf picking with containers of up to 3 m in length and weight of 2.5 t. Registered customers can query the stocking and availability of required materials in the appropriate dimensions around the clock online. As a result, you can plan in both the short-term and long-term.

### Quality

For a company operating successfully on a global scale, only the most stringent quality standards are good enough. We invest continuously in research and development to allow us to address future demands with innovative hightech materials and process technologies. Strict CAQ guidelines are implemented to safeguard the individual process steps from incoming raw materials right through to the finished product. Ensinger is certified to DIN EN ISO 9001 as well as DIN EN ISO 13485.

### **Product Compliance Management**

National and international statutory requirements create the framework for defining the physiological harmlessness and environmental compatibility of materials. Our Product Compliance Management system allows us to ensure compliance of our materials and their production with these requirements through measures such as regular material testing. In close co-operation with our raw material suppliers, we make available all the information you will require for approval of your end products.

# Expertise in theory and practice

As industrial demands become ever more stringent, the diversity and complexity of materials increase. Ensinger keeps pace with these advances by the continuous further development of its semi-finished product portfolio. Many products can only be used optimally if they are further processed with expertise. And so we provide a wide range of information in our brochures, data sheets and product handling sheets. Moreover, we offer our customers training in plastics with strong relevance to practice. The seminars are led by our application engineers.

# Added value for you

Ensinger is currently expanding its internet customer service offering. Online calculation facilities allow quick and convenient processing. Our stock shapes are cut and machined to individual customer order for the specific application. We also provide a wide range of standard finish machining operations.

# Our service includes:

- $\rightarrow$  Sawing of plates, round rods and tubes
- $\rightarrow$  Grinding of rods and tubes
- $\rightarrow$  Thickness processing
- $\rightarrow$  Profile milling
- $\rightarrow$  Combined work processes

You can find additional information on the following page.

# 24 hours a day, 7 days a week

If you wish to use the cutting and surface processing service, a number of calculation programs are available on our website. Using the cutting and machining calculation program, for instance, you can quickly and easily determine which dimensions or piece numbers will allow the greatest savings. You can find out any time around the clock whether the material you require is available from stock in the right dimensions. Our online enquiry tool permits registered customers to enquire about current stock availability. Cut pieces can be despatched if required within just a few hours.

# Information in multiple languages

To supplement this product catalogue, in-depth information is provided on the offered stock shapes on our multilingual website www.ensinger-online.com. Information supplied includes for instance technical criteria for material selection, data sheets, declarations of conformity, general product liability information and our brochure "Machining recommendations for semi-finished engineering plastics".

| CONCERNMENT OF PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No                                                                         |                                        |               |             |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|---------------|-------------|-----------|
| in a inset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ensinger o                                                                 | 3                                      |               |             |           |
| Eastomer Gewitz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                        |               |             |           |
| The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ensinger cut pieces calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                        |               |             |           |
| Des Born                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | steosie size (platisi):<br>TECAPDEK (PEEK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                        |               |             |           |
| and the second se | 1 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                        |               |             |           |
| Pires .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analise part provint from T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | out wrigh (max. 2009 met)                                                  |                                        |               |             |           |
| First > Taster Concession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Martine +12+11+**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Relations: 142 min<br>Related to Relations of response                     |                                        |               |             |           |
| this Driver,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | und width strate, dot inter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | State Barry                                                                |                                        |               |             |           |
| Commercy<br>Marcon Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tite daffing 5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                        |               |             |           |
| custowerse:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A second as assessingly a statement make instance for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the last last operate the set lines of last lat                        |                                        |               |             | 4 4       |
| tagend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sampe of all p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            | 2 3                                    |               |             | 0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | reindes   Des Defetes East former filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                                        | _             |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Team price pit p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                         |                                        | なーニーであっ       | - 101-3809- | teles - B |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shall gross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                        | Encle         | 0           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | situté par Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                                        | LIISO         | iger Ou     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | masula entry of the Science of the S |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wright atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ensinger Abschnittskalkulation Run                                         | d- und Hohist                          | abe           |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Withian Six dia Abadhhillalinga (Runduklika, Hahlaklika<br>TECAPSEK (PSEK) | (e:                                    |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Management of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                          |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                          |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Line and the second sec | Contra Americana                                                           | Antonio inge (m                        | an John way.  |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Atlaine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toward +43'+ 12mm                                                          | Bur DRM < 30.<br>Material nitrategy en | tined to -    |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Alerimouster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | (Defeuers Tolerary                     | aut Arthophy. |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Comments of the Comments of th |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Unit Refine the Internet in Control of Con | Anaple for Abarberra                                                       |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Baryd Triant                                                               |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seispreta pro Sribut.                                                      | 8,80 E                                 | \$40.4        | 9.00.0      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Interin                                                                    | 8,00 E                                 | 640.6         | 9-00-6      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Management (Management and in                                              | 0,00 #                                 | 3014          | 8104        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arche regenerative prog                                                    |                                        |               | 14          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mospectrum (                                                               | 0.0144                                 | 8.0140        | 30.910      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |                                        |               |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                        |               |             |           |

# *Flexible – versatile – the finished solution for your application needs*

We can carry out further machining of your stock shapes in line with your envisaged finished product. An experienced team of skilled machining specialists using our stateof-the-art machine shops will ensure that any machining operation you require is performed to the highest quality standard, even with tight tolerances. Individual work steps can also be combined. If required, we anneal the material between work stages to ensure that the end result complies precisely with your specification.





We produce sections and cut pieces in a very wide range of different dimensions: Panel sections can be cut in unreinforced materials from dimensions up to 170 x 1200 x 3200 mm, rods and tubes in a minimum length of 10 mm and diameters of up to 360 mm. In reinforced materials, restrictions apply in some cases in respect of tolerances or the maximum possible machinable dimensions. If necessary, we saw the material when warm to ensure top quality results. We grind on ultramodern grinding centres, depending on the material and dimensions, up to a diameter of 90 mm and up to h9 (depending on diameter and material). Successful grinding requires not only the best possible machine pool but also a high level of skill and an expert's feel for the material. It produces rods and tubes machined to an exemplary level of surface quality, with narrow tolerances and good concentricity characteristics.



Two-sided cutting using rotation cutting machines allows for very tight tolerances and ideal surface qualities – even for fibre-reinforced plastics. Four-sided planning machines are available for angular planning and mouldings. Simpler geometries can be supplied with precise position and shape tolerances using profile milling. This method is used in particular for the manufacture of profiles. On request, we are also able to debur edges, cut T profiles or angles, produce rebates or radii between 3 mm and 20 mm.



TECAFORM AD AF natural

Very good slide friction

Low water absorption.

**TECAFORM AH LA blue** 

(POM-C, solid lubricant)

Very good sliding and

Low water absorption.

**TECAFORM AD GF20** 

Highly abrasion resistant.

abrasion values.

natural

(POM-H GF)

Easily weldable.

properties due to

PTFE component.

(POM-H TF)

On request:

# TECAFORM

Polyoxymethylene (POM) - TECAFORM - is a semi-crystalline thermoplastic offering high strength and rigidity. The polymer has good sliding properties and wear resistance, as well as low moisture absorption. Its good level of dimensional stability and particularly good fatigue

strength, as well as its outstanding machining properties make POM a versatile engineering material for complex components. A distinction is drawn between homopolymers (POM-H) - TECAFORM AD - and copolymers (POM-C) TECAFORM AH.

#### Overview of types

**TECAFORM AH natural** (POM-C) Good chemical resistance. High resilience.

TECAFORM AH black (POM-C) Good UV stability. Very good machining properties

**TECAFORM AH blue** (POM-C) → p. 66

**TECAFORM AH GF25** natural (POM-C GF) Glass fibre reinforced polyacetal with very high strength. High thermal dimensional stability.

TECAFORM AH MT (POM-C) → p. 70

> TECAFORM AH ID (POM-C, detectable filler) → p. 66

**TECAFORM AH ELS black** (POM-C, conductive carbon) → p. 84

TECAFORM AH SD natural (POM-C, antistatic) → p. 84

**TECAFORM AD natural** (POM-H) High mechanical strength. Very good machining properties.

#### Application examples

Sealing plug TECAFORM AH natural (POM-C) High dimensional stability. Good sliding properties. Resistant to oil and grease.



Conveyor chain elements TECAFORM AD natural (РОМ-Н) Good strength. Good sliding properties. Good machining capability.



Sealing piston TECAFORM AH black (POM-C) Good resilience. Good strength. High dimensional stability.



# **TECAFORM** Rods

|                 | TECAFORM<br>AH natural | TECAFORM<br>AH black | TECAFORM<br>AH ELS black | TECAFORM<br>AD natural | TECAFORM<br>AD black | TECAFORM<br>AD AF natural |             |
|-----------------|------------------------|----------------------|--------------------------|------------------------|----------------------|---------------------------|-------------|
| Polymer         | POM-C                  | ΡΟΜ-Γ                | POM-C                    | POM-H                  | POM-H                | POM-H                     |             |
| Density [a/cm³] | 1.41                   | 1.41                 | 1.41                     | 1.43                   | 1.43                 | 1.49                      |             |
| Colour          | white<br>opaque        | black<br>opaque      | black<br>opaque          | white<br>opaque        | black<br>opaque      | dark brown<br>opaque      |             |
| Diameter [mm]   | [ka/m]                 | [ka/m]               | [ka/m]                   | [ka/m]                 | [ka/m]               | [ka/m]                    | Tolerance   |
|                 | 0.013                  | 0.013                | [Kg/11]                  | 0.013                  | 0.013                | [Kg/11]                   | +0.10/+0.60 |
|                 | 0.015                  | 0.015                |                          | 0.015                  | 0.015                |                           | +0.10/+0.00 |
|                 | 0.021                  | 0.021                |                          | 0.022                  | 0.022                |                           |             |
| 5               | 0.052                  | 0.052                | 0.046                    | 0.055                  | 0.055                | 0 0/0                     |             |
| 0               | 0.040                  | 0.040                | 0.040                    | 0.040                  | 0.040                | 0.048                     | .0.10/.0.70 |
| 0               | 0.000                  | 0.000                |                          | 0.001                  | 0.001                | 0.004                     | +0.10/+0.70 |
| 10              | 0.122                  | 0.122                | 0.122                    | 0.124                  | 0.124                | 0.123                     | .0.20/.0.90 |
| 14              | 0.170                  | 0.170                | 0.170                    | 0.175                  | 0.175                | 0.187                     | +0.20/+0.80 |
| 14              | 0.237                  | 0.237                | 0.257                    | 0.241                  | 0.241                | 0.251                     |             |
| 15              | 0.271                  | 0.271                | 0.271                    | 0.275                  | 0.275                | 0.207                     |             |
| 10              | 0.000                  | 0.500                | 0.000                    | 0.512                  | 0.312                | 0.525                     |             |
| 10              | 0.307                  | 0.307                | 0.307                    | 0.352                  | 0.392                | 0.403                     |             |
| 20              | 0.475                  | 0.475                | 0.475                    | 0.481                  | 0.481                | 0.502                     | .0.20/.1.00 |
|                 | 0.5//                  | 0.5//                | 0.5//                    | 0.585                  | 0.585                | 0.610                     | +0.20/+1.00 |
| 25              | 0.740                  | 0.740                | 0.740                    | 0.751                  | 0.751                | 0.782                     |             |
| 28              | 0.924                  | 0.924                | 0.924                    | 0.937                  | 0.937                | 0.976                     |             |
| 30              | 1.06                   | 1.06                 | 1.06                     | 1.07                   | 1.07                 | 1.12                      |             |
| 32              | 1.21                   | 1.21                 | 1.21                     | 1.22                   | 1.22                 | 1.28                      | +0.20/+1.20 |
| 36              | 1.52                   | 1.52                 | 1.52                     | 1.54                   | 1.54                 | 1.61                      |             |
| 40              | 1.87                   | 1.87                 | 1.87                     | 1.90                   | 1.90                 | 1.98                      |             |
| 45              | 2.37                   | 2.37                 | 2.37                     | 2.40                   | 2.40                 | 2.50                      | +0.30/+1.30 |
| 50              | 2.91                   | 2.91                 | 2.91                     | 2.96                   | 2.96                 | 3.08                      |             |
| 56              | 3.64                   | 3.64                 | 3.64                     | 3.70                   | 3.70                 | 3.85                      |             |
| 60              | 4.20                   | 4.20                 | 4.20                     | 4.26                   | 4.26                 | 4.43                      | +0.30/+1.60 |
| 65              | 4.91                   | 4.91                 | 4.91                     | 4.98                   | 4.98                 | 5.19                      |             |
| 70              | 5.69                   | 5.69                 | 5.69                     | 5.77                   | 5.77                 | 6.01                      |             |
| 75              | 6.56                   | 6.56                 | 6.56                     | 6.65                   | 6.65                 | 6.93                      | +0.40/+2.00 |
| 80              | 7.45                   | 7.45                 | 7.45                     | 7.55                   | 7.55                 | 7.87                      |             |
| 85              | 8.42                   | 8.42                 | 8.42                     | 8.54                   | 8.54                 | 8.90                      | +0.50/+2.20 |
| 90              | 9.43                   | 9.43                 | 9.43                     | 9.56                   | 9.56                 | 9.96                      |             |
| 100             | 11.65                  | 11.65                | 11.65                    | 11.81                  | 11.81                | 12.31                     | +0.60/+2.50 |
| 110             | 14.13                  | 14.13                | 14.13                    | 14.33                  | 14.33                | 14.93                     | +0.70/+3.00 |
| 120             | 16.85                  | 16.85                | 16.85                    | 17.09                  | 17.09                | 17.81                     | +0.80/+3.50 |
| 125             | 18.26                  | 18.26                | 18.26                    | 18.52                  | 18.52                | 19.30                     |             |
| 130             | 19.79                  | 19.79                |                          | 20.07                  | 20.07                | 20.91                     | +0.90/+3.80 |
| 135             | 21.31                  | 21.31                |                          | 21.61                  | 21.61                | 22.52                     |             |
| 140             | 22.89                  | 22.89                |                          | 23.21                  | 23.21                | 24.19                     |             |
| 150             | 26.3                   | 26.3                 |                          | 26.7                   | 26.7                 | 27.8                      | +1.00/+4.20 |
| 160             | 29.9                   | 29.9                 |                          | 30.4                   |                      |                           | +1.10/+4.50 |
| 165             | 31.9                   | 31.9                 |                          | 32.4                   |                      |                           | +1.20/+5.00 |
| 180             | 37.9                   | 37.9                 |                          | 38.4                   |                      |                           |             |
| 200             | 46.7                   | 46.7                 |                          | 47.4                   |                      |                           | +1.30/+5.50 |
| 210             | 51.5                   | 51.5                 |                          |                        |                      |                           | +1.30/+5.80 |
| 230             | 61.8                   | 61.8                 |                          |                        |                      |                           | +1.50/+6.20 |
| 250             | 72.8                   | 72.8                 |                          |                        |                      |                           |             |
| 300             | 104.7                  | 104.7                |                          |                        |                      |                           | +1.50/+7.50 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm



Stock item
Non-stock item special production

| 0                            | TECAFORM<br>AH GF25<br>natural |             |
|------------------------------|--------------------------------|-------------|
| Polymer                      | POM-C                          |             |
| Density [g/cm <sup>3</sup> ] | 1.59                           |             |
| Colour                       | white                          |             |
|                              | opaque                         |             |
|                              |                                | Tolerance   |
| Diameter [mm]                | [kg/m]                         | [mm]        |
| 6                            | 0.052                          | +0.10/+0.70 |
| 8                            | 0.091                          | +0.10/+0.80 |
| 10                           | 0.139                          |             |
| 12                           | 0.201                          | +0.20/+0.90 |
| 14                           | 0.270                          |             |
| 15                           | 0.308                          |             |
| 16                           | 0.349                          |             |
| 18                           | 0.438                          |             |
| 20                           | 0.538                          |             |
| 22                           | 0.656                          | +0.20/+1.20 |
| 25                           | 0.841                          |             |
| 28                           | 1.05                           |             |
| 30                           | 1.20                           |             |
| 32                           | 1.36                           |             |
| 36                           | 1.73                           | +0.20/+1.60 |
| 40                           | 2.13                           |             |
| 45                           | 2.71                           | +0.30/+2.00 |
| 50                           | 3.33                           |             |
| 56                           | 4.16                           |             |
| 60                           | 4.80                           | +0.30/+2.50 |
| 65                           | 5.62                           |             |
| 70                           | 6.49                           |             |
| 75                           | 7.49                           | +0.40/+3.00 |
| 80                           | 8.50                           |             |
| 85                           | 9.63                           | +0.50/+3.40 |
| 90                           | 10.77                          |             |
| 100                          | 13.30                          | +0.60/+3.80 |

**TECAFORM** Rods

| 6               | TECAFORM<br>AH GF20<br>natural |             |
|-----------------|--------------------------------|-------------|
| Polymer         | POM-C GF20                     |             |
| Density [g/cm³] | 1.55                           |             |
| Colour          | white<br>opaque                |             |
|                 |                                | Tolerance   |
| Diameter [mm]   | [kg/m]                         | [mm]        |
| 110             | 15.70                          | +0.70/+4.20 |
| 120             | 18.69                          | +0.80/+4.60 |
| 125             | 20.25                          |             |
| 135             | 23.70                          | +0.90/+5.40 |
| 140             | 25.4                           |             |
| 150             | 29.2                           | +1.00/+5.80 |
| 160             | 33.3                           | +1.10/+6.30 |

Tolerances according to DIN: Length 0/+3% Diameter 6 – 100 available on request. Stock lengths: 3,000 mm

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

# **TECAFORM** Plates

|                         | TECAFORM<br>AH natural | TECAFORM<br>AH black | TECAFORM<br>AH GF25<br>natural | TECAFORM<br>AH ELS black | TECAFORM<br>AD natural | TECAFORM<br>AD black | TECAFORM<br>AD AF<br>natural |                   |
|-------------------------|------------------------|----------------------|--------------------------------|--------------------------|------------------------|----------------------|------------------------------|-------------------|
| Polvmer                 | POM-C                  | POM-C                | POM-C                          | POM-C                    | POM-H                  | POM-H                | РОМ-Н                        |                   |
| Density [g/cm³]         | 1.41                   | 1.41                 | 1.59                           | 1.41                     | 1.43                   | 1.43                 | 1.49                         |                   |
| Colour                  | white<br>opaque        | black<br>opaque      | white<br>opaque                | black<br>opaque          | white<br>opaque        | black<br>opaque      | dark brown<br>opaque         |                   |
| Dimensions [mm]         | [kg/m]                 | [kg/m]               | [kg/m]                         | [kg/m]                   | [kg/m]                 | [kg/m]               | [kg/m]                       | Tolerance<br>[mm] |
| 5 × 500                 | 4.04                   | 4.04                 |                                |                          | 4.09                   | 4.09                 | 4.27                         | +0.20/+0.70       |
| 6 × 500                 | 4.78                   | 4.78                 |                                |                          | 4.85                   | 4.85                 | 5.05                         |                   |
| 8 × 500                 | 6.41                   | 6.41                 | 7.22                           | 6.41                     | 6.50                   | 6.50                 | 6.77                         | +0.20/+1.10       |
| 8 × 620                 | 7.90                   | 7.90                 | 8.91                           | 7.90                     | 8.01                   | 8.01                 | 8.35                         |                   |
| 10 × 500                | 7.89                   | 7.89                 | 8.90                           | 7.89                     | 8.00                   | 8.00                 | 8.34                         |                   |
| 10 × 620                | 9.73                   | 9.73                 | 10.97                          | 9.73                     | 9.86                   | 9.86                 | 10.28                        |                   |
| 10 × 1,000*             | 15.55                  | 15.55                |                                |                          | 15.77                  | 15.77                |                              |                   |
| 12 × 500                | 9.55                   | 9.55                 | 10.77                          | 9.55                     | 9.69                   | 9.69                 | 10.10                        | +0.30/+1.50       |
| 12 × 620                | 11.78                  | 11.78                | 13.28                          | 11.78                    | 11.95                  | 11.95                | 12.45                        |                   |
| 12 × 1,000*             | 18.83                  | 18.83                |                                |                          | 19.10                  | 19.10                |                              |                   |
| 15 × 500                | 11.78                  | 11.78                | 13.28                          | 11.78                    | 11.94                  | 11.94                | 12.44                        |                   |
| 15 × 620                | 14.52                  | 14.52                | 16.37                          | 14.52                    | 14.73                  | 14.73                | 15.34                        |                   |
| 15 × 1,000 <sup>*</sup> | 23.21                  | 23.21                |                                |                          | 23.54                  | 23.54                |                              |                   |
| 16 × 500                | 12.52                  | 12.52                | 14.12                          | 12.52                    | 12.69                  | 12.69                | 13.23                        |                   |
| 16 × 1,000*             | 24.67                  | 24.67                |                                |                          | 25.0                   | 25.0                 |                              |                   |
| 18×500                  | 14.00                  | 14.00                | 15.79                          | 14.00                    | 14.20                  | 14.20                | 14.79                        |                   |
| 18×620                  |                        | 17.26                | 19.46                          | 17.26                    | 17.51                  | 17.51                | 18.24                        |                   |
| 18×1,000*               | 27.6                   | 27.6                 |                                |                          | 28.0                   | 28.0                 |                              |                   |
| 20 × 500                | 15.48                  | 15.48                | 17.46                          | 15.48                    | 15.70                  | 15.70                | 16.36                        |                   |
| 20 × 620                | 19.09                  | 19.09                | 21.52                          | 19.09                    | 19.36                  | 19.36                | 20.17                        |                   |
| 20 × 1,000*             | 30.5                   | 30.5                 |                                |                          | 30.9                   | 30.9                 |                              |                   |
| 22 × 500                | 16.96                  | 16.96                | 19.13                          | 16.96                    | 17.20                  | 17.20                | 17.92                        |                   |
| 22 × 620                | 20.91                  | 20.91                | 23.58                          | 20.91                    | 21.21                  | 21.21                | 22.10                        |                   |
| 22 × 1,000*             | 33.4                   | 33.4                 |                                |                          | 33.9                   | 33.9                 |                              |                   |
| 25 × 500                | 19.18                  | 19.18                | 21.63                          | 19.18                    | 19.46                  | 19.46                | 20.27                        |                   |
| 25 × 620                | 23.65                  | 23.65                | 26.7                           | 23.65                    | 23.99                  | 23.99                | 25.0                         |                   |
| 25 × 1,000*             | 37.8                   | 37.8                 |                                |                          | 38.3                   | 38.3                 |                              |                   |
| 30 × 500                | 23.33                  | 23.33                | 26.3                           | 23.33                    | 23.66                  | 23.66                | 24.65                        | +0.50/+2.50       |
| 30 × 620                | 28.8                   | 28.8                 | 32.4                           | 28.8                     | 29.2                   | 29.2                 | 30.4                         |                   |
| 30 × 1,000*             | 46.0                   | 46.0                 |                                |                          | 46.6                   | 46.6                 |                              |                   |
| 35 × 500                | 27.0                   | 27.0                 | 30.5                           | 27.0                     | 27.4                   | 27.4                 | 28.6                         |                   |
| 35 × 620                | 33.3                   | 33.3                 | 37.6                           | 33.3                     | 33.8                   | 33.8                 | 35.2                         |                   |
| 35 × 1,000 <sup>*</sup> | 53.3                   | 53.3                 |                                |                          | 54.0                   | 54.0                 |                              |                   |
| 40 × 500                | 30.7                   | 30.7                 | 34.7                           | 30.7                     | 31.2                   | 31.2                 | 32.5                         |                   |
| 40 × 620                | 37.9                   | 37.9                 | 42.7                           | 37.9                     | 38.4                   | 38.4                 | 40.1                         |                   |
| 40 × 1,000*             | 60.6                   | 60.6                 |                                |                          | 61.4                   | 61.4                 |                              |                   |
| 45 × 500                | 34.4                   | 34.4                 | 38.8                           | 34.4                     | 34.9                   | 34.9                 | 36.4                         |                   |
| 45 × 620                | 42.5                   | 42.5                 | 47.9                           | 42.5                     | 43.1                   | 43.1                 | 44.9                         |                   |
| 45 × 1,000*             | 67.9                   | 67.9                 |                                |                          | 68.8                   | 68.8                 |                              |                   |
| 50 × 500                | 38.1                   | 38.1                 | 43.0                           | 38.1                     | 38.7                   | 38.7                 | 40.3                         |                   |
| 50 × 620                | 47.0                   | 47.0                 | 53.0                           | 47.0                     | 47.7                   | 47.7                 | 49.7                         |                   |
| 50 × 1,000*             | 75.2                   | 75.2                 |                                |                          | 76.2                   | 76.2                 |                              |                   |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm

\* Stock length: 1,000 mm

Continued on next page



Stock item
Non-stock item special production

|                         | TECAFORM<br>AH natural | TECAFORM<br>AH black | TECAFORM<br>AH GF25<br>natural | TECAFORM<br>AH ELS black | TECAFORM<br>AD natural | TECAFORM<br>AD black | TECAFORM<br>AD AF<br>natural |             |
|-------------------------|------------------------|----------------------|--------------------------------|--------------------------|------------------------|----------------------|------------------------------|-------------|
| Polymer                 | POM-C                  | POM-C                | POM-C                          | POM-C                    | POM-H                  | POM-H                | POM-H                        |             |
| Density [g/cm³]         | 1.41                   | 1.41                 | 1.59                           | 1.41                     | 1.43                   | 1.43                 | 1.49                         |             |
| Colour                  | white<br>opaque        | black<br>opaque      | white<br>opaque                | black<br>opaque          | white<br>opaque        | black<br>opaque      | dark brown<br>opaque         |             |
|                         | FL ( )                 | r. , 1               | FL ( ]                         | Г. <u>с</u> 1            | FL ( 1                 | Fi ( 1               | FL ( 1                       | Tolerance   |
| Dimensions [mm]         | [kg/m]                 | [kg/m]               | [kg/m]                         | [kg/m]                   | [kg/m]                 | [kg/m]               | [kg/m]                       | [mm]        |
| 60 × 500                | 45.9                   | 45.9                 | 50,5°                          | 45.9                     | 46.6                   | 46.6                 |                              | +0.50/+3.50 |
| 60 × 620                | 56.6                   | 56.6                 | 62,2°                          | 56.6                     | 57.4                   | 57.4                 |                              |             |
| 60 × 1,000*             | 90.5                   | 90.5                 |                                |                          | 91.8                   | 91.8                 |                              |             |
| 70 × 500                | 53.3                   | 53.3                 |                                | 53.3                     | 54.1                   | 54.1                 |                              |             |
| 70 × 620                | 65.8                   | 65.8                 |                                | 65.8                     | 66.7                   | 66.7                 |                              |             |
| 70 × 1,000 <sup>*</sup> | 105.1                  | 105.1                |                                |                          | 106.6                  | 106.6                |                              |             |
| 80 × 500                | 61.3                   | 61.3                 |                                | 61.3                     | 62.2                   | 62.2                 |                              | +0.50/+5.00 |
| 80 × 620                | 75.6                   | 75.6                 |                                | 75.6                     | 76.6                   | 76.6                 |                              |             |
| 80 × 1,000*             | 120.8                  | 120.8                |                                |                          | 122.5                  | 122.5                |                              |             |
| 90 × 500                | 68.7                   | 68.7                 |                                |                          | 69.7                   | 69.7                 |                              |             |
| 90 × 620                | 84.7                   | 84.7                 |                                |                          | 85.9                   | 85.9                 |                              |             |
| 90 × 1,000 <sup>*</sup> | 135.4                  | 135.4                |                                |                          |                        |                      |                              |             |
| 100 × 500               | 76.1                   | 76.1                 |                                |                          | 77.2                   | 77.2                 |                              |             |
| 100 × 620               | 93.8                   | 93.8                 |                                |                          | 95.2                   | 95.2                 |                              |             |
| 100 × 1,000*            | 150.0                  | 150.0                |                                |                          |                        |                      |                              |             |
| 110 × 620*              | 103.4                  | 103.4                |                                |                          |                        |                      |                              | +0.50/+6.00 |
| 120 × 620*              | 112.6                  | 112.6                |                                |                          |                        |                      |                              |             |
| 130 × 620*              | 121.7                  | 121.7                |                                |                          |                        |                      |                              |             |
| 140 × 620 <sup>*</sup>  | 131.3                  | 131.3                |                                |                          |                        |                      |                              | +0.50/+7.00 |
| 150 × 620*              | 140.4                  | 140.4                |                                |                          |                        |                      |                              |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm

\* Stock length: 2,000 mm

<sup>a</sup> 20% glass fibre content (density 1.55 g/cm<sup>3</sup>)

### **TECAFORM** Plates

|             | TECAFORM<br>AH SD<br>natural |                 |
|-------------|------------------------------|-----------------|
|             | POM-C                        | Polymer         |
|             | 1.35                         | Density [g/cm³] |
|             | ivory<br>opaque              | Colour          |
| Tolerance   |                              |                 |
| [mm]        | [kg/m]                       | Dimensions [mm] |
| +0.00/+0.64 | 10.91                        | 12.7 × 610      |
|             | 16.28                        | 19.1 × 610      |
|             | 21.56                        | 25.4 × 610      |
|             | 32.2                         | 38.1 × 610      |
|             | 37.5                         | 44.4 × 610      |
|             | 42.9                         | 50.8 × 610      |

Tolerances according to DIN: Length 0/+12,7mm Width 0/+6,35mm Stock lengths: 1,220 mm



Non-stock item special production

### **TECAFORM** Tubes

| $\langle \rangle$ |   |
|-------------------|---|
| ( )               |   |
|                   | 1 |
|                   |   |
|                   |   |

**TECAFORM AH** Polymer: POM-C Density: 1.41 g/cm<sup>3</sup> Colour: white opaque

| Diameter<br>Outer [mm]  | $\rightarrow$ | 16     | 20    | 25    | 30           | 32    | 36    | 40    | 45    | 50           | 56   | 60           | 65   | 70     | 75   | 80           | 85   | 90   | 100   | 110          |
|-------------------------|---------------|--------|-------|-------|--------------|-------|-------|-------|-------|--------------|------|--------------|------|--------|------|--------------|------|------|-------|--------------|
| Diameter<br>Inner [mm]  | $\downarrow$  | [kg/m] |       |       |              |       |       |       |       |              |      |              |      |        |      |              |      |      |       |              |
|                         | 8             | 0.258  |       |       |              |       |       |       |       |              |      |              |      |        |      |              |      |      |       |              |
|                         | 10            |        | 0.390 | 0.652 |              |       |       |       |       |              |      |              |      |        |      |              |      |      |       |              |
|                         | 15            |        | 0.257 | 0.520 | 0.839        | 1.04  |       |       |       |              |      |              |      |        |      |              |      |      |       |              |
|                         | 18            |        |       | 0.413 | 0.732        |       |       |       |       |              |      |              |      |        |      |              |      |      |       |              |
|                         | 20            |        |       |       | 0.649        |       | 1.18  | 1.53  |       | 2.58         |      |              |      |        |      |              |      |      |       |              |
|                         | 25            |        |       |       | 0.404        | 0.618 | 0.937 | 1.29  | 1.79  | 2.34         |      | 3.68         | 4.45 | 5.24   | 6.08 | 6.97         | 8.10 | 9.11 | 11.31 |              |
|                         | 30            |        |       |       |              |       |       | 0.996 |       | 2.04         | 2.85 | 3.39         | 4.16 | 4.95   | 5.79 | 6.68         | 7.82 | 8.84 | 11.04 |              |
|                         | 32            |        |       |       |              |       |       |       |       |              | 2.71 |              |      | 4.82   | 5.66 | 6.55         |      | 8.71 | 10.91 |              |
|                         | 36            |        |       |       |              |       |       |       | 1.06  | 1.61         |      |              | 3.74 | 4.53   | 5.37 | 6.26         | 7.42 | 8.44 | 10.64 |              |
|                         | 40            |        |       |       |              |       |       |       | 0.730 | 1.28         | 2.09 | 2.63         | 3.42 |        |      | 5.94         | 7.11 | 8.12 | 10.32 | 12.75        |
|                         | 45            |        |       |       |              |       |       |       |       | 0.816        | 1.63 |              | 2.96 |        |      | 5.48         | 6.66 | 7.68 | 9.88  | 12.31        |
|                         | 50            |        |       |       |              |       |       |       |       |              |      | 1.65         |      | 3.23   | 4.07 | 4.96         | 6.16 | 7.18 | 9.38  | 11.81        |
|                         | 56            |        |       |       |              |       |       |       |       |              |      |              |      |        |      | 4.27         | 5.49 | 6.51 | 8.71  |              |
|                         | 60            |        |       |       |              |       |       |       |       |              |      |              |      | 2.03   |      | 3.76         | 5.00 | 6.01 | 8.21  | 10.64        |
|                         | 65            |        |       |       |              |       |       |       |       |              |      |              |      | •••••• |      |              | 4.33 | 5.34 | 7.54  | 9.97         |
|                         | 70            |        |       |       |              |       |       |       |       |              |      |              |      |        |      | 2.34         |      | 4.62 | 6.82  | 9.25         |
|                         | 80            |        |       |       |              |       |       |       |       |              |      |              |      |        |      |              |      | 3.00 | 5.20  | 7.63         |
| Tolerance<br>Outer [mm] |               |        |       |       | +0.4<br>+1.1 |       |       |       |       | +0.6<br>+2.0 |      | +0.8<br>+2.5 |      |        |      | +0.8<br>+3.0 |      |      |       | +1.2<br>+3.6 |
| Tolerance<br>Inner [mm] |               |        |       |       | -1.1<br>-0.4 |       |       |       |       | -2.0<br>-0.6 |      | -2.5<br>-0.8 |      |        |      | -3.0<br>-0.8 |      |      |       | -5.0<br>-1.6 |

| Diameter<br>Outer [mm]  | $\rightarrow$ | 120   | 125   | 130   | 135   | 140   | 150          | 165   | 180          | 200          | 230   | 250           | 300           | 320           | 435           | 505           |
|-------------------------|---------------|-------|-------|-------|-------|-------|--------------|-------|--------------|--------------|-------|---------------|---------------|---------------|---------------|---------------|
|                         | 40            | 15.65 | 17.06 | 18.54 |       |       |              |       |              |              |       |               |               |               |               |               |
|                         | 50            | 14.72 | 16.14 | 17.62 | 19.15 | 20.73 | 24.08        |       |              |              |       |               |               |               |               |               |
|                         | 60            | 13.58 | 15.00 | 16.47 | 18.00 | 19.59 | 22.93        |       |              | -            |       |               |               |               |               |               |
|                         | 65            |       | 14.34 |       | 17.34 | 18.93 | 22.27        |       |              |              |       |               |               |               |               |               |
|                         | 70            | 12.21 | 13.62 | 15.10 | 16.63 | 18.22 | 21.56        |       |              |              |       |               |               |               |               |               |
|                         | 80            | 10.61 | 12.03 | 13.50 | 15.03 | 16.62 | 19.96        | 25.7  | 31.7         | 40.7         |       |               |               |               |               |               |
|                         | 90            | 8.78  | 10.20 | 11.68 | 13.21 | 14.79 | 18.14        | 23.92 | 29.9         | 38.9         | 55.2  | 66.3          |               |               |               |               |
|                         | 100           | 6.73  | 8.15  | 9.62  | 11.16 | 12.74 | 16.09        | 21.88 | 27.8         | 36.9         | 53.2  | 64.4          |               |               |               |               |
|                         | 110           |       |       |       | 8.88  | 10.47 | 13.81        | 19.62 | 25.6         | 34.7         | 51.0  | 62.2          |               |               |               |               |
|                         | 125           |       |       |       |       |       | 9.97         | 15.80 | 21.77        | 30.9         | 47.3  | 58.4          | 90.7          |               |               |               |
|                         | 140           |       |       |       |       |       |              | 11.48 | 17.44        | 26.6         |       |               |               |               |               |               |
|                         | 150           |       |       |       |       |       |              |       | 14.28        | 23.42        | 40.0  | 51.1          | 83.4          |               |               |               |
|                         | 160           |       |       |       |       |       |              |       | 10.89        | 20.04        |       |               |               |               |               |               |
|                         | 175           |       |       |       |       |       |              |       |              | 14.56        |       |               |               |               |               |               |
|                         | 180           |       |       |       |       |       |              |       |              |              | 29.3  | 40.4          | 72.8          |               |               |               |
|                         | 200           |       |       |       |       |       |              |       |              |              | 21.05 | 32.2          | 64.6          |               |               |               |
|                         | 220           |       |       |       |       |       |              |       |              |              |       | 23.02         |               |               |               |               |
|                         | 240           |       |       |       |       |       |              |       |              |              |       |               |               | 60.4          |               |               |
|                         | 270           |       |       |       |       |       |              |       |              |              |       |               |               | 43.7          |               |               |
|                         | 300           |       |       |       |       |       |              |       |              |              |       |               |               |               | 126.5         |               |
|                         | 390           |       |       |       |       |       |              |       |              |              |       |               |               |               |               | 136.0         |
| Tolerance<br>Outer [mm] |               |       |       |       |       |       | +1.5<br>+4.5 |       | +1.8<br>+5.4 | +2.0<br>+6.0 |       | +3.0<br>+9.0  | +3.0<br>+10.0 | +3.0<br>+11.0 | +3.0<br>+13.0 | +3.0<br>+15.0 |
| Tolerance<br>Inner [mm] |               |       |       |       |       |       | -6.5<br>-2.0 |       | -7.5<br>-2.2 | -8.5<br>-2.5 |       | -12.0<br>-3.0 | -13.0<br>-3.5 | -14.0<br>-3.5 | -16.0<br>-3.5 | -18.0<br>-3.5 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

Non-stock item –

special production

Stock item

The complete range of dimensions can be looked up in our online stock program at www.ensinger-online.com



# TECAMID

Polyamides (PA) are semi-crystalline polymers with very good mechanical properties, extreme toughness and excellent sliding and wear properties. The properties vary here from hard, tough PA 66 to soft, flexible PA 12. Depending on the type, polyamides absorb different amounts of moisture, so influencing the mechanical properties and dimensional accuracy. TECAMID is the family of extruded polyamides.

#### Overview of types

#### TECAMID 66 natural (PA 66) Good adhesion. Easily welded. Electrically insulating, good machining properties.

**TECAMID 66 MO black** (PA 66 MoS<sub>2</sub>) Good UV resistance. Low abrasion.

TECAMID 66 GF30 black (PA 66 GF) Glass fibre reinforced. Very high strength. Good UV stability. Improved thermal dimensional stability.

TECAMID 66 CF20 black (PA 66 CF) Elevated service temperature. Carbon fibre reinforced. Very high strength.

**TECAMID 66 HI brown** (PA 66, heat stabilizer) High level of hardness and dimensional stability. Heat stabilized stock shapes. TECAMID 66 LA natural (PA 66, solid lubricant) Very good sliding and abrasion properties with soft mating surfaces. Tough with good strength.

#### **TECAMID 6 natural** (PA 6) Extreme toughness

and impact resistance. Good chemical resistance.

**TECAMID 6 blue** (*PA 6*) → p. 66

**TECAMID 6 ID blue** (PA 6, detectable filler)  $\rightarrow$  p. 66

**TECAMID 6 MO black** (PA 6 MoS<sub>2</sub>) Good UV resistance and surface hardness. Good machining properties and dimensional stability.

TECAMID 6 GF30 black (PA 6 GF) Glass fibre-reinforced. Very high strength. Good UV stability and raised thermal dimensional stability.

# TECAMID 46 red brown

*(PA 46)* High thermal-mechanical load. High rigidity. Good creep strength.

#### **TECAMID 12 natural** (PA 12)

Very good impact strength. Minimal moisture absorption.

# TECAMID 66 / X GF50 black

(PA 66 GF) Glass fibre reinforced with extremely high strength. High long-term service temperature and dimensional stability.

#### On request:

**TECAMID 11 natural** (PA 11)

High degree of toughness. Minimal moisture absorption. Bio-based.

**TECAMID 6/3 TR natural** (PA 6-3) Transparent. Electrically insulating.

#### Application examples

Valve flange TECAMID 6 natural (PA 6) Minimal thermal expansion. Good chemical resistance. High impact strength. Good electrical properties.





Gear TECAMID 6 MO black (PA 6 MoS<sub>2</sub>) Good toughness and strength. Resistant to oil and grease. High impact strength.



|                              | TECAMID<br>6 natural | TECAMID<br>6 MO black | TECAMID<br>66 natural | TECAMID<br>66 MO black | TECAMID<br>66 HI brown | TECAMID<br>66 LA natural | TECAMID<br>12 natural |             |
|------------------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|--------------------------|-----------------------|-------------|
| Polvmer                      | PA 6                 | PA 6                  | PA 66                 | PA 66                  | PA 66                  | PA 66                    | PA 12                 |             |
| Density [a/cm <sup>3</sup> ] | 1.14                 | 1.14                  | 1.15                  | 1.15                   | 1.15                   | 1.11                     | 1.02                  |             |
| Colour                       | ivory<br>opaque      | black<br>opaque       | ivory<br>opaque       | black<br>opaque        | brown<br>opaque        | ivory<br>opaque          | ivory<br>opaque       |             |
|                              | r. , 1               | FL ( 1                | r. , 1                | FL ( ]                 | FL ( 1                 | FL ( 1                   | FL ( 1                | Tolerance   |
| Diameter [mm]                | [kg/m]               | [kg/m]                | [kg/m]                | [kg/m]                 | [kg/m]                 | [kg/m]                   | [kg/m]                | [mm]        |
| 4                            | 0.017                | 0.017                 | 0.01/                 | 0.01/                  |                        |                          | 0.015                 | +0.10/+0.60 |
| 5                            | 0.026                | 0.026                 | 0.026                 | 0.026                  |                        |                          | 0.023                 |             |
| 6                            | 0.037                | 0.037                 | 0.037                 | 0.037                  |                        |                          | 0.033                 |             |
| 8                            | 0.064                | 0.064                 | 0.065                 | 0.065                  | 0.065                  | 0.063                    | 0.058                 | +0.10/+0./0 |
| 10                           | 0.099                | 0.099                 | 0.100                 | 0.100                  | 0.100                  | 0.096                    | 0.088                 | 0.20/.0.00  |
| 12                           | 0.143                | 0.143                 | 0.144                 | 0.144                  | 0.144                  | 0.139                    | 0.128                 | +0.20/+0.80 |
| 14                           | 0.192                | 0.192                 | 0.194                 | 0.194                  | 0.194                  | 0.18/                    | 0.172                 |             |
| 15                           | 0.219                | 0.219                 | 0.221                 | 0.221                  | 0.221                  | 0.214                    | 0.196                 |             |
| 16                           | 0.249                | 0.249                 | 0.251                 | 0.251                  | 0.251                  | 0.242                    | U.222                 |             |
| 18                           | 0.313                | 0.313                 | 0.315                 | 0.315                  | 0.315                  | 0.304                    | 0.280                 |             |
| 20                           | 0.384                | 0.384                 | 0.387                 | 0.387                  | 0.387                  | 0.374                    | 0.343                 |             |
| 22                           | 0.466                | 0.466                 | 0.4/1                 | 0.4/1                  | 0.4/1                  | 0.454                    | 0.41/                 | +0.20/+1.00 |
| 25                           | 0.599                | 0.599                 | 0.604                 | 0.604                  | 0.604                  | 0.583                    | 0.536                 |             |
| 28                           | 0.747                | 0.747                 | 0.754                 | 0.754                  | 0.754                  | 0.727                    | U.668                 |             |
| 30                           | 0.855                | 0.855                 | 0.863                 | 0.863                  | 0.863                  | 0.833                    | 0.765                 |             |
| 32                           | 0.977                | 0.977                 | 0.985                 | 0.985                  | 0.985                  | 0.951                    | 0.874                 | +0.20/+1.20 |
| 36                           | 1.23                 | 1.23                  | 1.24                  | 1.24                   | 1.24                   | 1.20                     | 1.10                  |             |
| 40                           | 1.51                 | 1.51                  | 1.53                  | 1.53                   | 1.53                   | 1.47                     | 1.35                  |             |
| 45                           | 1.92                 | 1.92                  | 1.93                  | 1.93                   | 1.93                   | 1.87                     | 1.71                  | +0.30/+1.30 |
| 50                           | 2.36                 | 2.36                  | 2.38                  | 2.38                   | 2.38                   | 2.29                     | 2.11                  |             |
| 56                           | 2.95                 | 2.95                  | 2.97                  | 2.97                   | 2.97                   | 2.87                     | 2.64                  |             |
| 60                           | 3.39                 | 3.39                  | 3.42                  | 3.42                   | 3.42                   | 3.30                     | 3.04                  | +0.30/+1.60 |
| 65                           | 3.97                 | 3.97                  | 4.01                  | 4.01                   | 4.01                   | 3.8/                     | 3.55                  |             |
| 70                           | 4.60                 | 4.60                  | 4.64                  | 4.64                   | 4.64                   | 4.48                     | 4.11                  |             |
| 75                           | 5.30                 | 5.30                  | 5.35                  | 5.35                   | 5.35                   | 5.16                     | 4.74                  | +0.40/+2.00 |
| 80                           | 6.02                 | 6.02                  | 6.07                  | 6.07                   | 6.07                   | 5.86                     | 5.39                  |             |
| 85                           | 6.81                 | 6.81                  | 6.87                  | 6.87                   | 6.87                   | 6.63                     | 6.09                  | +0.50/+2.20 |
| 90                           | 7.62                 | 7.62                  | 7.69                  | 7.69                   | 7.69                   | 7.42                     | 6.82                  |             |
| 100                          | 9.42                 | 9.42                  | 9.50                  | 9.50                   | 9.50                   | 9.17                     | 8.43                  | +0.60/+2.50 |
| 110                          | 11.43                | 11.43                 | 11.53                 | 11.53                  | 11.53                  | 11.12                    | 10.22                 | +0.70/+3.00 |
| 120                          | 13.63                | 13.63                 | 13.75                 | 13.75                  | 13.75                  | 13.27                    | 12.19                 | +0.80/+3.50 |
| 125                          | 14.76                | 14.76                 | 14.89                 | 14.89                  | 14.89                  | 14.38                    | 13.21                 |             |
| 130                          | 16.00                | 16.00                 | 16.14                 | 16.14                  | 16.14                  | 15.58                    | 14.31                 | +0.90/+3.80 |
| 135                          | 17.23                | 17.23                 | 17.38                 | 17.38                  | 17.38                  | 16./8                    | 15.42                 |             |
| 140                          | 18.51                | 18.51                 | 18.67                 | 18.67                  | 18.67                  | 18.02                    | 16.56                 |             |
| 150                          | 21.27                | 21.27                 | 21.45                 | 21.45                  | 21.45                  | 20.71                    | 19.03                 | +1.00/+4.20 |
| 160                          | 24.20                |                       | 24.42                 | 24.42                  |                        |                          | 21.66                 | +1.10/+4.50 |
| 165                          | 25.8                 |                       | 26.0                  | 26.0                   |                        |                          | 23.09                 | +1.20/+5.00 |
| 180                          | 30.6                 | _                     | 30.9                  | 30.9                   |                        |                          | 27.4                  |             |
| 200                          | 37.8                 |                       | 38.1                  | 38.1                   |                        |                          | 33.8                  | +1.30/+5.50 |
| 210                          | 41.6                 |                       |                       |                        |                        |                          |                       | +1.30/+5.80 |
| 220                          | 45.6                 |                       |                       |                        |                        |                          |                       |             |
| 230                          | 49.9                 | ·····                 |                       |                        |                        |                          |                       | +1.50/+6.20 |
| 250                          | 58.9                 |                       |                       |                        |                        |                          |                       |             |
| 300                          | 84.7                 |                       |                       |                        |                        |                          |                       | +1.50/+7.50 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

Alternative diameters for TECAMID 6 and TECAMID 6 MO may be found in the TECAST section on page 27.



Stock item
Non-stock item special production

|                      | TECAMID      | TECAMID           | TECAMID       |             |
|----------------------|--------------|-------------------|---------------|-------------|
| $\bigcirc$           | 6 GF30 DIUCK | 66 GF30 DIUCK     | 66 LF20 DIUCK |             |
| Polymer              | PA 6         | PA 66             | PA 66         |             |
| ,<br>Density [q/cm³] | 1.36         | 1.34              | 1.23          |             |
| Colour               | black        | black             | black         |             |
|                      | opaque       | opaque            | opaque        |             |
|                      |              |                   |               | Tolerance   |
| Diameter [mm]        | [kg/m]       | [kg/m]            | [kg/m]        | [mm]        |
| 4                    | 0.021        |                   |               | +0.10/+0.70 |
| 5                    | 0.032        |                   |               |             |
| 6                    | 0.045        | -                 |               |             |
| 8                    | 0.078        | 0.077             | 0.070         | +0.10/+0.80 |
| 10                   | 0.119        | 0.117             | 0.108         |             |
| 12                   | 0.172        | 0.169             | 0.155         | +0.20/+0.90 |
| 14                   | 0.231        | 0.227             | 0.209         |             |
| 15                   | 0.263        | 0.260             | 0.238         |             |
| 16                   | 0.298        | 0.294             | 0.270         |             |
| 18                   | 0.375        | 0.369             | 0.339         |             |
| 20                   | 0.460        | 0.453             | 0.416         |             |
| 22                   | 0.561        | 0.553             | 0.508         | +0.20/+1.20 |
| 25                   | 0.720        | 0.709             | 0.651         |             |
| 28                   | 0.897        | 0.884             | 0.812         |             |
| 30                   | 1.03         | 1.01              | 0.929         |             |
| 32                   | 1.16         | 1.15              | 1.05          |             |
| 36                   | 1.48         | 1.46              | 1.34          | +0.20/+1.60 |
| 40                   | 1.82         | 1.80              | 1.65          |             |
| 45                   | 2.32         | 2.29              | 2.10          | +0.30/+2.00 |
| 50                   | 2.85         | 2.81              | 2.58          |             |
| 56                   | 3.56         | 3.51              | 3.22          |             |
| 60                   | 4.11         | 4.05              | 3.71          | +0.30/+2.50 |
| 65                   | 4.80         | 4.73              | 4.34          |             |
| 70                   | 5.55         | 5.47              | 5.02          |             |
| 75                   | 6.41         | 6.32              |               | +0.40/+3.00 |
| 80                   | 7.27         | 7.17              |               |             |
| 85                   | 8.24         | 8.12              |               | +0.50/+3.40 |
| 90                   | 9.21         | 9.08              |               |             |
| 100                  | 11.38        | 11.21             |               | +0.60/+3.80 |
| 110                  | 13.78        | 13.57             |               | +0.70/+4.20 |
| 120                  | 16.40        | 16.16             |               | +0.80/+4.60 |
| 125                  | 17.77        | 17.51*            |               |             |
| 130                  | 19.32        | 19.03             |               | +0.90/+5.40 |
| 135*                 | 20.79        | 20.49             |               |             |
| 140*                 | 22.33        | 22.00             |               |             |
| 150*                 | 25.6         | 25.3              |               | +1.00/+5.80 |
| 160*                 |              | 28.6              |               | +1.10/+6.30 |
| 165*                 |              | 30.5              |               | +1.20/+7.40 |
| 180*                 |              | 36.2              |               |             |
| 200*                 |              | 44.7 <sup>ª</sup> |               | +1.30/+8.50 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

\* Stock length: 1,000 mm

 $^{\circ}~$  25 % glass fibre content (density 1.33 g/cm  $^{3}),$ stock length 1,000 mm



Non-stock item special production

|                                   | TECAMID<br>6 natural | TECAMID<br>6 MO black | TECAMID<br>66 natural | TECAMID<br>66 MO black | TECAMID<br>66 HI brown | TECAMID<br>66 LA natural | TECAMID<br>12 natural |                   |
|-----------------------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|--------------------------|-----------------------|-------------------|
| Polvmer                           | PA 6                 | PA 6                  | PA 66                 | PA 66                  | PA 66                  | PA 66                    | PA 12                 |                   |
| ,<br>Density [q/cm <sup>3</sup> ] | 1.14                 | 1.14                  | 1.15                  | 1.15                   | 1.15                   | 1.11                     | 1.02                  |                   |
| Colour                            | ivory<br>opaque      | black<br>opaque       | ivory<br>opaque       | black<br>opaque        | brown<br>opaque        | ivory<br>opaque          | ivory<br>opaque       |                   |
| Dimensions [mm]                   | [kg/m]               | [kg/m]                | [kg/m]                | [kg/m]                 | [kg/m]                 | [kg/m]                   | [kg/m]                | Tolerance<br>[mm] |
| 5 × 500                           | 3.26                 | 3.26                  | 3.29                  | 3.29                   | 3.29                   | 3.18                     | 2.92                  | +0.20/+0.70       |
| 6 × 500                           | 3.86                 | 3.86                  | 3.90                  | 3.90                   | 3.90                   | 3.76                     | 3.46                  |                   |
| 8 × 500                           | 5.18                 | 5.18                  | 5.23                  | 5.23                   | 5.23                   | 5.04                     | 4.63                  | +0.20/+1.10       |
| 10 × 500                          | 6.38                 | 6.38                  | 6.43                  | 6.43                   | 6.43                   | 6.21                     | 5.71                  |                   |
| 10 × 620                          | 7.86                 | 7.86                  | 7.93                  | 7.93                   | 7.93                   | 7.66                     | 7.04                  |                   |
| 12 × 500                          | 7.73                 | 7.73                  | 7.79                  | 7.79                   | 7.79                   | 7.52                     | 6.91                  | +0.30/+1.50       |
| 12 × 620                          | 9.53                 | 9.53                  | 9.61                  | 9.61                   | 9.61                   | 9.27                     | 8.52                  |                   |
| 12 × 1,000*                       | 15.23                | 15.23                 | 15.36                 |                        | 15.36                  | 14.82                    |                       |                   |
| 16 × 500                          | 10.12                | 10.12                 | 10.21                 | 10.21                  | 10.21                  | 9.85                     | 9.06                  |                   |
| 16×620                            | 12.48                | 12.48                 | 12.59                 | 12.59                  | 12.59                  | 12.15                    | 11.17                 |                   |
| 16 × 1,000*                       | 19.95                | 19.95                 | 20.12                 |                        | 20.12                  | 19.42                    |                       |                   |
| 18 × 500                          | 11.32                | 11.32                 | 11.42                 | 11.42                  | 11.42                  | 11.02                    | 10.13                 |                   |
| 18 × 1,000*                       | 22.31                | 22.31                 | 22.50                 |                        | 22.50                  | 21.72                    |                       |                   |
| 20 × 500                          | 12.52                | 12.52                 | 12.63                 | 12.63                  | 12.63                  | 12.19                    | 11.20                 |                   |
| 20 × 620                          | 15.43                | 15.43                 | 15.57                 | 15.57                  | 15.57                  | 15.03                    |                       |                   |
| 20 × 1,000*                       | 24.67                | 24.67                 | 24.88                 |                        | 24.88                  | 24.02                    |                       |                   |
| 22 × 500                          | 13.71                | 13.71                 | 13.83                 | 13.83                  | 13.83                  | 13.35                    | 12.27                 |                   |
| 22 × 1,000*                       | 27.0                 | 27.0                  | 27.3                  |                        | 27.3                   | 26.3                     |                       |                   |
| 25 × 500                          | 15.51                | 15.51                 | 15.65                 | 15.65                  | 15.65                  | 15.10                    | 13.88                 |                   |
| 25 × 620                          | 19.12                | 19.12                 | 19.29                 | 19.29                  | 19.29                  | 18.62                    | 17.11                 |                   |
| 25 × 1,000*                       | 30.6                 | 30.6                  | 30.8                  |                        | 30.8                   | 29.8                     |                       |                   |
| 30 × 500                          | 18.86                | 18.86                 | 19.03                 | 19.03                  | 19.03                  | 18.37                    | 16.88                 | +0.50/+2.50       |
| 30 × 620                          | 23.26                | 23.26                 | 23.46                 | 23.46                  | 23.46                  | 22.65                    | 20.81                 |                   |
| 30 × 1,000                        | 37.2                 | 37.2                  | 37.5                  |                        | 37.5                   | 36.2                     |                       |                   |
| 35 × 500                          | 21.86                | 21.86                 | 22.05                 | 22.05                  | 22.05                  | 21.28                    | 19.56                 |                   |
| 35 × 620                          | 27.0                 | 27.0                  | 27.2                  | 27.2                   | 27.2                   | 26.2                     | 24.11                 |                   |
| 35 × 1,000                        | 43.1                 | 43.1                  | 43.5                  | 75.4                   | 43.5                   | 41.9                     |                       |                   |
| 40 × 500                          | 24.85                | 24.85                 | 25.1                  | 25.1                   | 25.1                   | 24.20                    | 22.24                 |                   |
| 40 × 620                          | 30.6                 | 30.6                  | 30.9                  | 30.9                   | 30.9                   | 29.8                     | 27.4                  |                   |
| 40 × 1,000                        | 49.0                 | 49.0                  | 49.4                  | 1 05                   | 49.4                   | 47.7                     | 24.01                 |                   |
| 45 × 500                          | 27.8                 | 27.8                  | 28.1                  | 28.1                   | 28.1                   | 27.1                     | 24.91                 |                   |
| 45 × 620                          | 54.5                 | 54.3                  | 34.6                  | 34.6                   | 34.6                   | 53.4                     | 30.7                  |                   |
| 45 × 1,000                        | 54.5                 | 54.5                  | 55.4                  | 21 1                   | 55.4                   | 53.4                     | 77.6                  |                   |
| 50 × 500                          | 0.UC<br>0.0C         | 0.00                  | 20 A                  |                        | N 9C                   | 50.0<br>0 72             | 27.0                  |                   |
| 50 × 620                          | 50.0                 | 50.U                  | 50.4<br>C1 2          | 50.4                   | 50.4<br>61 5           | 57.0                     | 54.0                  |                   |
| 50 × 1,000                        | 27.1                 | 00.8                  | 27 5                  |                        | 27 5                   | 25.2                     |                       | .0 50/.2 50       |
| 60 × 500                          | 37.I<br>//5.8        |                       | 46.7                  |                        | 37.3<br>46.7           | 30.2<br>AA 6             |                       | +0.30/+3.30       |
| 60 × 1 000*                       |                      |                       | 73.2                  |                        | 73.8                   | 71.0                     |                       |                   |
| 70 ~ 500                          | / 5.2                |                       | / 3.0                 |                        | / 5.0                  | / 1.2                    |                       |                   |
| 70 × 500                          | 45.I<br>53.2         |                       | 43.5<br>53.6          |                        | 43.5<br>53.6           | 51.8                     |                       |                   |
| 70 x 1,000*                       | 85 D                 |                       | 0.00                  |                        | 85.7                   | J1.0                     |                       |                   |
| 80 × 300                          | 05.0                 |                       | 30.6                  |                        | 30.6                   |                          |                       | +0 50/+5 00       |
| 80 × 500                          | 49.6                 |                       | 50.0                  |                        | 50.0<br>50.0           | <u>48 २</u>              |                       |                   |
| 80 × 620                          | 61.1                 |                       | 61.6                  |                        | 50.0                   | 10.5                     |                       |                   |
| 80 × 1,000*                       | 97.7                 |                       | 01.0                  |                        |                        |                          |                       |                   |
| 90 × 500                          | 55.5                 |                       | 56.0                  |                        | 56.N                   | 54.1                     |                       |                   |
| 100 × 300                         |                      |                       | 38.0                  |                        | 38.0                   |                          |                       |                   |
| 100 × 500                         | 61.5                 |                       | 62.1                  |                        | 62.1                   | 59.9                     |                       |                   |

Tolerances according to DIN: Length 0/+3% / Width +5/+25mm Stock lengths: 3,000mm \* Stock length: 2,000 mm

Alternative diameters for TECAMID 6 and TECAMID 6 MO

can be found in the TECAST section on page 27.

Stock item Non-stock item – special production

|                              | TECAMID<br>6 GF30 black | TECAMID<br>66 GF30<br>black |             |
|------------------------------|-------------------------|-----------------------------|-------------|
| Polymer                      | PA 6                    | PA 66                       |             |
| Density [g/cm <sup>3</sup> ] | 1.36                    | 1.34                        |             |
| Colour                       | black                   | black                       |             |
|                              | opaque                  | opaque                      |             |
|                              |                         |                             | Tolerance   |
| Dimensions [mm]              | [kg/m]                  | [kg/m]                      | [mm]        |
| 5 × 500                      | 3.89                    | 3.84                        | +0.20/+0.70 |
| 6 × 500                      | 4.61                    | 4.54                        |             |
| 8 × 500                      | 6.18                    | 6.09                        | +0.20/+1.10 |
| 10 × 500                     | 7.61                    | 7.50                        |             |
| 10 × 620                     | 9.38                    | 9.24                        |             |
| 12 × 500                     | 9.22                    | 9.08                        | +0.30/+1.50 |
| 12 × 620                     | 11.36                   | 11.20                       |             |
| 16 × 500                     | 12.07                   | 11.90                       |             |
| 16 × 620                     | 14.89                   | 14.67                       |             |
| 18 × 500                     | 13.50                   | 13.30                       |             |
| 20 × 500                     | 14.93                   | 14.71                       |             |
| 20 × 620                     | 18.41                   | 18.14                       |             |
| 22 × 500                     | 16.36                   | 16.12                       |             |
| 25 × 500                     | 18.50                   | 18.23                       |             |
| 25 × 620                     | 22.81                   | 22.48                       |             |
| 30 × 500                     | 22.50                   | 22.17                       | +0.50/+2.50 |
| 30 × 620                     | 27.7                    | 27.3                        |             |
| 35 × 500                     | 26.1                    | 25.7                        |             |
| 35 × 620                     | 32.2                    | 31.7                        |             |
| 40 × 500                     | 29.6                    | 29.2                        |             |
| 40 × 620                     | 36.6                    | 36.0                        |             |
| 45 × 500                     | 33.2                    | 32.7                        |             |
| 45 × 620                     | 41.0                    | 40.4                        |             |
| 50 × 500                     | 36.8                    | 36.3                        |             |
| 50 × 620                     | 45.4                    | 44.7                        |             |
| 60 × 500                     | 44.3                    | 43.6                        | +0.50/+3.50 |
| 60 × 620                     | 54.6                    | 53.8                        |             |
| 70 × 500                     | 51.4                    | 50.7                        |             |
| 70 × 620                     | 63.4                    | 62.5                        |             |
| 80 × 500                     | 59.1                    | 58.2                        | +0.50/+5.00 |
| 80 × 620                     | 72.9                    | 71.8                        |             |
| 90 × 500                     | 66.3                    | 65.3                        |             |
| 90 × 620                     | 81.7                    | 80.5                        |             |
| 100 × 300                    | 44.9                    | 44.2                        |             |
| 100 × 500                    | 73.4                    | 72.3                        |             |
| 100 × 620                    | 90.5                    | 89.2                        |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm

### **TECAMID** Plates

|                 | TECAMID<br>66 CF20<br>black |             |
|-----------------|-----------------------------|-------------|
| Polymer         | PA 66                       |             |
| Density [g/cm³] | 1.23                        |             |
| Colour          | black<br>opaque             |             |
|                 |                             | Tolerance   |
| Dimensions [mm] | [kg/m]                      | [mm]        |
| 8 × 300         | 3.42                        | +0.20/+1.10 |
| 10 × 300        | 4.21                        |             |
| 12 × 300        | 5.10                        | +0.30/+1.50 |
| 16 × 300        | 6.68                        |             |
| 18 × 300        | 7.47                        |             |
| 20 × 300        | 8.26                        |             |
| 20 × 500        | 13.50                       |             |
| 25 × 300        | 10.24                       |             |
| 25 × 500        | 16.73                       |             |
| 30 × 300        | 12.45                       | +0.50/+2.50 |
| 30 × 500        | 20.35                       |             |
| 35 × 300        | 14.42                       |             |
| 35 × 500        | 23.58                       |             |
| 40 × 300        | 16.40                       |             |
| 40 × 500        | 26.8                        |             |
| 45 × 300        | 18.38                       |             |
| 45 × 500        | 30.0                        |             |
| 50 × 300        | 20.35                       |             |
| 50 × 500        | 33.3                        |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm

# **TECAMID** Plates

|                 | TECAMID<br>46 red brown |             |
|-----------------|-------------------------|-------------|
| Polymer         | PA 46                   |             |
| Density [g/cm³] | 1.19                    |             |
| Colour          | red brown<br>opaque     |             |
|                 |                         | Tolerance   |
| Dimensions [mm] | [kg/m]                  | [mm]        |
| 10×620          | 8.21                    | +0.20/+1.10 |
|                 |                         |             |

| 12 × 620 | 9.94  | +0.30/+1.50 |
|----------|-------|-------------|
| 16 × 620 | 13.03 |             |
| 20 × 620 | 16.11 |             |
| 25 × 620 | 19.96 |             |
| 30 × 620 | 24.28 | +0.50/+2.50 |
|          |       |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 2,000 mm



### **TECAMID** Tubes

| 0                       |               | <b>TECAM</b><br>Polyme<br>Densit<br>Colour: | <b>11D 6 nd</b><br>er: PA 6<br>y: 1.14<br>: ivory o | a <b>tural</b><br>5<br>g/cm³<br>paque |              |       |                |        |       |              |       |              |       |       |              |                           |      |              |              |
|-------------------------|---------------|---------------------------------------------|-----------------------------------------------------|---------------------------------------|--------------|-------|----------------|--------|-------|--------------|-------|--------------|-------|-------|--------------|---------------------------|------|--------------|--------------|
| Diameter<br>Outer [mm]  | $\rightarrow$ | 16                                          | 20                                                  | 25                                    | 30           | 32    | 36             | 40     | 45    | 50           | 56    | 60           | 70    | 75    | 80           | 85                        | 90   | 100          | 110          |
| Diameter<br>Inner [mm]  | $\downarrow$  |                                             |                                                     |                                       |              |       |                |        |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 8             | 0.208                                       |                                                     |                                       |              |       |                |        |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 10            |                                             | 0.315                                               |                                       |              |       |                |        |       |              |       |              |       |       | •            |                           |      |              |              |
|                         | 15            |                                             | 0.208                                               | 0.420                                 | 0.678        |       |                |        |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 18            |                                             |                                                     | 0.334                                 | 0.592        |       |                |        |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 20            |                                             |                                                     |                                       | 0.525        | 0.693 | 0.951          | 1.24   |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 25            |                                             |                                                     |                                       | 0.326        | 0.500 | 0.758          |        | 1.44  | 1.89         | 2.54  |              |       | 4.91  | 5.64         | 6.55                      | 7.37 | 9.15         |              |
|                         | 30            |                                             |                                                     |                                       |              |       |                | 0.805  |       | 1.65         | 2.30  | 2.74         |       | 4.68  | 5.40         | 6.33                      | 7.15 | 8.93         |              |
|                         | 32            |                                             | •                                                   |                                       |              |       |                |        | 0.050 | 1 20         | 2.19  |              | 3.89  | 4.57  | 5.30         | C 00                      | 7.04 | 8.82         |              |
|                         | 36            |                                             |                                                     |                                       |              |       |                |        | 0.858 | 1.30         | 1.96  | 2 1 2        | 3.66  | 4.34  | 5.06         | 6.UU                      | 6.82 | 8.60         | 10 21        |
|                         | 40            |                                             | ••••••                                              |                                       |              |       |                | •••••• | 0.590 | 1.04         | 1.09  | 2.13         |       |       | 4.80         | 5./5                      | 6.57 | 8.35<br>7 00 | 10.31        |
| ••••••                  | 45<br>50      |                                             |                                                     |                                       |              |       |                |        |       | 0.055        | 1.52  | 1 34         | 7 61  |       | 4.45         | 5.55                      | 5.81 | 7 58         | 9.55         |
|                         | 54            | ••••                                        |                                                     |                                       |              |       |                |        |       |              |       | 1.54         | 2.01  | 2.92  | 4.01         | 4.63                      | 5.01 | 7.23         | 9.19         |
|                         | 60            |                                             | ••••••                                              |                                       |              |       |                |        |       |              |       |              | 1.64  |       | 3.04         |                           |      | 6.64         | 8.60         |
|                         | 65            |                                             | •                                                   |                                       |              |       |                | •      |       |              |       |              |       |       |              | 3.50                      | 4.32 | 6.10         | 8.06         |
|                         | 70            |                                             |                                                     |                                       |              |       |                |        |       |              |       |              |       |       | 1.89         |                           | 3.73 | 5.51         | 7.47         |
|                         | 80            |                                             | •                                                   |                                       |              |       |                |        |       |              |       |              |       |       | ••••••       |                           | 2.42 | 4.20         | 6.17         |
| Tolerance<br>Outer [mm] |               |                                             |                                                     |                                       | +0.4<br>+1.1 |       |                |        |       | +0.6<br>+2.0 |       | +0.8<br>+2.5 |       |       | +0.8<br>+3.0 |                           |      |              | +1.2<br>+3.6 |
| Tolerance               |               |                                             |                                                     |                                       | -1.1         |       |                |        |       | -2.0         |       | -2.5         |       |       | -3.0         |                           |      |              | -5.0         |
| Inner [mm]              |               |                                             |                                                     |                                       | -0.4         |       |                |        |       | -U.b         |       | -0.8         |       |       | -U.8         |                           |      |              | -1.6         |
|                         |               |                                             |                                                     |                                       |              |       |                |        |       |              |       |              |       |       |              |                           |      |              |              |
| Diameter<br>Outer [mm]  | $\rightarrow$ | 120                                         | 125                                                 | 130                                   | 135          | 140   | 150            | 165    | 180   | 200          | 230   | 250          | 300   | 320   | 435          | 505                       |      |              |              |
|                         | 40            | 12.65                                       | 13.80                                               | 14.99                                 |              |       |                |        |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 50            | 11.91                                       | 13.05                                               | 14.24                                 | 15.48        | 16.76 | 19.4/          |        |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 54            | 10.00                                       | 12.70                                               | 12 27                                 | 1/ 5         | 15.41 | 19.12<br>10 сл |        |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 65            | 10.90                                       | 11 59                                               | 13.32                                 | 14.55        | 15.84 | 18.04          |        |       |              |       |              |       |       |              |                           |      |              |              |
|                         | 70            | 9 87                                        | 11 01                                               | 17 71                                 | 13 44        | 14 73 | 17 43          |        |       |              |       |              |       |       |              |                           |      |              |              |
| ••••••                  | 80            | 8.58                                        | 9.72                                                | 10.91                                 | 12.15        | 13.43 | 16.14          | 20.80  | 25.6  | 32.9         |       |              |       |       |              |                           |      |              |              |
|                         | 90            | 7.10                                        | 8.25                                                | 9.44                                  | 10.68        | 11.96 | 14.66          | 19.34  | 24.16 | 31.5         | 44.6  | 53.6         |       |       |              |                           |      |              |              |
|                         | 100           | 5.44                                        | 6.59                                                | 7.78                                  | 9.02         | 10.30 | 13.01          | 17.69  | 22.52 | 29.9         | 43.1  | 52.0         |       |       |              |                           |      |              |              |
|                         | 110           |                                             |                                                     |                                       | 7.18         | 8.46  | 11.17          | 15.86  | 20.69 | 28.0         | 41.3  | 50.3         |       |       |              |                           |      |              |              |
|                         | 125           |                                             |                                                     |                                       |              |       | 8.06           | 12.78  | 17.60 | 24.96        | 38.3  | 47.2         | 73.3  |       |              |                           |      |              |              |
|                         | 150           |                                             |                                                     |                                       |              |       |                |        | 11.54 | 18.94        | 32.3  | 41.3         | 67.4  |       |              |                           |      |              |              |
|                         | 175           |                                             |                                                     |                                       |              |       |                |        |       | 11.77        |       |              |       |       |              |                           |      |              |              |
|                         | 180           |                                             |                                                     |                                       |              |       |                |        |       |              | 23.69 | 32.7         | 58.9  |       |              |                           |      |              |              |
|                         | 200           |                                             |                                                     |                                       |              |       |                |        |       |              | 17.02 | 26.0         | 52.2  |       |              |                           |      |              |              |
|                         | 240           |                                             | •                                                   |                                       |              |       |                |        |       |              |       |              |       | 48.8  |              | 170.0                     |      |              |              |
|                         | 2/0           |                                             |                                                     |                                       |              |       |                |        |       |              |       |              |       | 35.3  | 107.7        | 1/9.9                     |      |              |              |
|                         | 200           |                                             | •                                                   |                                       |              |       |                |        |       |              |       |              |       |       | 102.3        | 104.9                     |      |              |              |
| Tolerance               | 220           |                                             |                                                     |                                       |              |       | +1 C           |        | +1 2  | +2 ∩         |       | +2 U         | +3 U  | +2 U  | +2 U         | <sup>+</sup> 5 U<br>TO2'2 |      |              |              |
| Outer [mm]              |               |                                             |                                                     |                                       |              |       | +4.5           |        | +5.4  | +6.0         |       | +9.0         | +10.0 | +11.0 | +13.0        | +15.0                     |      |              |              |
| Inner [mm]              |               |                                             |                                                     |                                       |              |       | -2.0           |        | -2.2  | -0.5         |       | -3.0         | -15.0 | -14.0 | -10.0        | -10.0                     |      |              |              |

Tolerances according to DIN: Length 0 / +3 %

Stock lengths: 3,000 mm

The complete range of dimensions can be looked up in our online stock program at www.ensinger-online.com



Stock item
Non-stock item special production

# TECAST TECARIM

Using the casting method, polyamide stock shapes with large diameters and a high degree of crystallinity (mechanical strength) can be produced. TECAST is the family of cast polyamides, TECARIM is the trade name given by Ensinger to the product group of tough, highly load-resistant polyamide 6 block copolymers manufactured using the reaction injection moulding method. Due to the manufacturing processes both polyamide materials are almost stress free.

#### Overview of types

### TECAST T natural

(PA 6 C) Good damping properties. Good sliding properties. High degree of toughness. High strength. Electrically insulating.

### TECAST T MO black

(PA 6 C MoS<sub>2</sub>) Good damping properties. Good sliding properties, also in dry running conditions. High degree of toughness. High strength. Improved surface hardness. UV / weather resistant. Not electrically insulating. TECAST L natural (PA 6 C, oil) Good Sliding properties, also in dry running conditions. Good slip-stick behaviour. Tough. Good thermal resistance. Good electrical insulation.

#### **TECAGLIDE green** (PA 6 C, solid lubricant) Good sliding properties, also in dry running conditions.

Good slip-stick behaviour. Tough. Electrically insulating.

TECARIM 1500 yellow (PA 6 C, Elastomere) Very high level of toughness. Good low temperature impact strength. No brittle fracture. Good shock absorption. Electrically insulating.

#### Application examples

Pulley (part component) TECAST T natural (PA 6 C) Good toughness and strength. Good damping properties. High abrasion resistance. High mechanical Ioad capacity.

#### Spring release block

TECARIM 1500 yellow (PA 6 C, Elastomere) Capable of deformation without fracture. Very good impact strength. High mechanical load capacity.



Sliding element with steel inlay TECAST T natural (PA 6 C) Good sliding properties. Good wear resistance. High mechanical load capacity.



# TECAST / TECARIM Rods

|                 | TECAST<br>T natural | TECAST<br>T MO black | TECAST<br>L natural | TECAST<br>L vellow | TECAST<br>L black | TECAGLIDE<br>areen |              |              |
|-----------------|---------------------|----------------------|---------------------|--------------------|-------------------|--------------------|--------------|--------------|
| $\bigcirc$      |                     |                      |                     | -                  |                   | 5                  |              |              |
| Polymer         | PA 6 C              | PA 6 C               | PA 6 C              | PA 6 C             | PA 6 C            | PA 6 C             |              |              |
| Density [g/cm³] | 1.15                | 1.15                 | 1.13                | 1.14               | 1.14              | 1.13               |              |              |
| Colour          | ivory               | black                | ivory               | yellow             | black             | green              | Stock length |              |
|                 | opaque              | opaque               | opaque              | opaque             | opaque            | opaque             |              |              |
|                 |                     |                      |                     |                    |                   |                    |              | Tolerance    |
| Diameter [mm]   | [kg/m]              | [kg/m]               | [kg/m]              | [kg/m]             | [kg/m]            | [kg/m]             | [mm]         | [mm]         |
| 50              | 2.41                | 2.41                 | 2.37                | 2.39               | 2.39              | 2.37               | 2.000        | +0.30/+1.90  |
| 60              | 3.54                | 3.54                 | 3.48                | 3.51               | 3.51              | 3.48               | 2.000        | +0.30/+2.50  |
| 65              | 4.09                | 4.09                 | 4.02                | 4.06               | 4.06              | 4.02               | 2.000        |              |
| 70              | 4.79                | 4.79                 | 4.70                | 4.74               | 4.74              | 4.70               | 2.000        |              |
| 75              | 5.38                | 5.38                 | 5.28                | 5.33               | 5.33              | 5.28               | 2.000        | +0.40/+2.80  |
| 80              | 6.03                | 6.03                 | 5.92                | 5.97               | 5.97              | 5.92               | 2.000        |              |
| 85              | 6.82                | 6.82                 | 6.70                | 6./6               | 6.76              | 6.70               | 2.000        | +0.50/+3.20  |
| 90              | 7.62                | 7.6Z                 | 7.49                | /.56               | /.56              | 7.49               | 2.000        | 0.00/ 2.50   |
| 95              | 8.24                | 8.24                 | 8.10                | 8.17               | 8.17              | 8.10               | 2.000        | +0.60/+3.50  |
| 110             | 9.46                | 9.46                 | 9.30                | 9.38               | 9.38              | 9.30               | 2.000        | .0.70/.2.00  |
| 110             | 12.38               | 12.38                | 12.18               | 11.28              | 11.28             | 12.18              | 2.000        | +0.707+3.90  |
| 120             | 15.75               | 15.75                | 14.77               | 11 00              | 1/ 00             | 14.77              | 2.000        | +0.00/+4.50  |
| 125             | 15.05               | 15.05                | 15 71               | 15.85              | 15.85             | 15 71              | 2.000        | +0.80/+5.00  |
| 130             | 17 73               | 17 73                | 17 / 7              | 17 58              | 17 59             | 17./1              | 2.000        | +0.807+5.00  |
| 140             | 18 54               | 18 54                | 18.71               | 18 37              | 18 37             | 18 71              | 2.000        |              |
| 150             | 21.60               | 21.60                | 21.22               | 21 41              | 21 41             | 21.22              | 2.000        | +0.80/+5.30  |
| 160             | 21.00               | 21.00                | 23.98               | 24.19              | 24.19             | 23.22              | 2.000        | +0.80/+6.00  |
| 170             | 27.3                | 27.3                 | 25.50               | 27.1               | 27.1              | 25.50              | 2.000        | +1.00/+6.50  |
| 180             | 30.3                | 30.3                 | 29.8                | 30.1               | 30.1              | 29.8               | 2.000        | 12100, 10130 |
| 190             | 34.0                | 34.0                 | 33.4                | 33.7               | 33.7              | 33.4               | 2.000        | +1.00/+7.50  |
| 200             | 37.9                | 37.9                 | 37.3                | 37.6               | 37.6              | 37.3               | 2.000        |              |
| 210             | 42.0                | 42.0                 | 41.3                | 41.6               | 41.6              | 41.3               | 2.000        | +1.00/+8.50  |
| 220             | 46.4                | 46.4                 | 45.6                | 46.0               | 46.0              | 45.6               | 2.000        | -            |
| 230             | 50.2                | 50.2                 | 49.4                | 49.8               | 49.8              | 49.4               | 2.000        | +1.00/+9.50  |
| 250             | 60.7                | 60.7                 | 59.6                | 60.2               | 60.2              | 59.6               | 2.000        |              |
| 280             | 76.2                | 76.2                 | 74.8                | 75.5               | 75.5              | 74.8               | 2.000        | +1.00/+11.00 |
| 300             | 86.7                | 86.7                 | 85.2                | 85.9               | 85.9              | 85.2               | 1.000        | +1.50/+12.00 |
| 320             | 97.7                | 97.7                 | 96.0                | 96.9               | 96.9              | 96.0               | 1.000        |              |
| 330             | 104.0               | 104.0                | 102.2               | 103.1              | 103.1             | 102.2              | 1.000        | +1.50/+13.50 |
| 350             | 117.1               | 117.1                | 115.1               | 116.1              | 116.1             | 115.1              | 1.000        |              |
| 370             | 131.0               | 131.0                | 128.7               | 129.9              | 129.9             | 128.7              | 1.000        | +1.50/+15.00 |
| 400             | 152.9               | 152.9                | 150.2               | 151.5              | 151.6             | 150.2              | 1.000        |              |
| 450             | 194.5               | 194.5                | 191.1               | 192.8              | 192.8             | 191.1              | 1.000        | +1.50/+16.50 |
| 500             | 237.2               | 237.2                | 233.1               | 235.1              | 235.1             | 233.1              | 1.000        | +1.50/+18.00 |
| 600             | 336.1               | 336.1                | 330.3               | 333.2              | 333.2             | 330.3              | 1.000        | +3.00/+21.00 |
| 710             | 482.9               | 482.9                | 474.5               | 478.7              | 478.7             | 474.5              | 600          | +3.00/+25.00 |
| 800             | 603.7               | 603.7                | 593.2               | 598.5              | 598.5             | 593.2              | 750          |              |

Tolerances according to DIN: Length 0/+3%



# **TECAST / TECARIM Plates**

|                              | TECAST<br>T natural | TECAST<br>T MO black | TECAST<br>L natural | TECAST<br>L yellow | TECAST<br>L black | TECAGLIDE<br>green |             |
|------------------------------|---------------------|----------------------|---------------------|--------------------|-------------------|--------------------|-------------|
| Polymer                      | PA 6 C              | PA 6 C               | PA 6 C              | PA 6 C             | PA 6 C            | PA 6 C             |             |
| Density [g/cm <sup>3</sup> ] | 1.15                | 1.15                 | 1.13                | 1.14               | 1.14              | 1.13               |             |
| Colour                       | ivory<br>opaque     | black<br>opaque      | ivory<br>opaque     | yellow<br>opaque   | black<br>opaque   | green<br>opaque    |             |
|                              |                     |                      |                     |                    |                   |                    | Tolerance   |
| Dimensions [mm]              | [kg/m]              | [kg/m]               | [kg/m]              | [kg/m]             | [kg/m]            | [kg/m]             | [mm]        |
| 8 × 1,000*                   | 10.85               | 10.85                | 10.66               | 10.75              | 10.75             | 10.66              | +0.20/+1.50 |
| 8×1,220                      | 14.09               | 14.09                | 13.85               | 13.97              | 13.97             | 13.85              |             |
| 10 × 1,000*                  | 13.35               | 13.35                | 13.12               | 13.23              | 13.23             | 13.12              |             |
| 10×1,220                     | 17.07               | 17.07                | 16.77               | 16.92              | 16.92             | 16.77              |             |
| 12 × 1,000 <sup>*</sup>      | 15.85               | 15.85                | 15.58               | 15.71              | 15.71             | 15.58              | +0.30/+2.50 |
| 12 × 1,220                   | 20.04               | 20.04                | 19.70               | 19.87              | 19.87             | 19.70              |             |
| 15 × 1,000*                  | 19.60               | 19.60                | 19.26               | 19.43              | 19.43             | 19.26              |             |
| 15×1,220                     | 24.51               | 24.51                | 24.08               | 24.29              | 24.29             | 24.08              |             |
| 16 × 1,000*                  | 20.85               | 20.85                | 20.49               | 20.67              | 20.67             | 20.49              |             |
| 16×1,220                     | 26.0                | 26.0                 | 25.5                | 25.8               | 25.8              | 25.5               |             |
| 20 × 1,000*                  | 25.9                | 25.9                 | 25.4                | 25.6               | 25.6              | 25.4               |             |
| 20×1,220                     | 31.9                | 31.9                 | 31.4                | 31.7               | 31.7              | 31.4               |             |
| 25 × 1,000*                  | 32.1                | 32.1                 | 31.5                | 31.8               | 31.8              | 31.5               |             |
| 25 × 1,220                   | 39.4                | 39.4                 | 38.7                | 39.0               | 39.0              | 38.7               |             |
| 30 × 1,000*                  | 38.4                | 38.4                 | 37.7                | 38.0               | 38.0              | 37.7               | +0.50/+3.50 |
| 30 × 1,220                   | 46.8                | 46.8                 | 46.0                | 46.4               | 46.4              | 46.0               |             |
| 35 × 1,000*                  | 44.6                | 44.6                 | 43.8                | 44.2               | 44.2              | 43.8               |             |
| 35 × 1,220                   | 54.3                | 54.3                 | 53.3                | 53.8               | 53.8              | 53.3               |             |
| 40 × 1,000 <sup>*</sup>      | 50.9                | 50.9                 | 50.0                | 50.4               | 50.4              | 50.0               |             |
| 40×1,220                     | 61.7                | 61.7                 | 60.6                | 61.2               | 61.2              | 60.6               |             |
| 45 × 1,000 <sup>*</sup>      | 57.1                | 57.1                 | 56.1                | 56.6               | 56.6              | 56.1               |             |
| 45 × 1,220                   | 69.1                | 69.1                 | 67.9                | 68.5               | 68.5              | 67.9               |             |
| 50 × 1,000 <sup>*</sup>      | 63.4                | 63.4                 | 62.3                | 62.8               | 62.8              | 62.3               |             |
| 50×1,220                     | 76.6                | 76.6                 | 75.2                | 75.9               | 75.9              | 75.2               |             |
| 55 × 1,000 <sup>*</sup>      | 69.6                | 69.6                 | 68.4                | 69.0               | 69.0              | 68.4               | +0.50/+5.00 |
| 55×1,220                     | 84.0                | 84.0                 | 82.5                | 83.3               | 83.3              | 82.5               |             |
| 60 × 1,000*                  | 75.9                | 75.9                 | 74.6                | 75.2               | 75.2              | 74.6               |             |
| 60×1,220                     | 91.4                | 91.4                 | 89.9                | 90.7               | 90.7              | 89.9               |             |
| 65 × 1,000*                  | 82.1                | 82.1                 | 80.7                | 81.4               | 81.4              | 80.7               |             |
| 70 × 1,000*                  | 88.4                | 88.4                 | 86.8                | 87.6               | 87.6              | 86.8               |             |
| 75 × 1,000*                  | 94.6                | 94.6                 | 93.0                | 93.8               | 93.8              | 93.0               | +0.50/+7.00 |
| 80 × 1,000*                  | 100.9               | 100.9                | 99.1                | 100.0              | 100.0             | 99.1               |             |
| 90 × 1,000 <sup>*</sup>      | 113.4               | 113.4                | 111.4               | 112.4              | 112.4             | 111.4              |             |
| 100 × 1,000 <sup>*</sup>     | 125.9               | 125.9                | 123.7               | 124.8              | 124.8             | 123.7              |             |
| 110 × 1,000*                 | 138.4               | 138.4                | 136.0               | 137.2              | 137.2             | 136.0              | +0.50/+9.00 |
| 120 × 1,000*                 | 150.9               | 150.9                | 148.3               | 149.6              | 149.6             | 148.3              |             |
| 130 × 1,000 <sup>*</sup>     | 163.4               | 163.4                | 160.6               | 162.0              | 162.0             | 160.6              |             |

Tolerances according to DIN: Length 0/+3% Width 0/+4% Stock lengths: 3,048 mm

\* Stock length: 2,000 mm



Stock item
Non-stock item special production

# TECAST / TECARIM Rods

| 0               | TECARIM<br>1500 yellow |              |             |
|-----------------|------------------------|--------------|-------------|
| Polymer         | PA 6 C                 |              |             |
| Density [g/cm³] | 1.11                   |              |             |
| Colour          | yellow<br>opaque       |              |             |
|                 |                        | Stock length | Tolerance   |
| Diameter [mm]   | [kg/m]                 | [mm]         | [mm]        |
| 30              | 0.844                  | 1.000        | +0.20/+1.40 |
| 40              | 1.48                   | 1.000        |             |
| 50              | 2.32                   | 1.000        | +0.30/+1.90 |
| 65              | 3.92                   | 1.000        | +0.30/+2.50 |
| 79              | 5.78                   | 1.000        | +0.40/+2.80 |
| 100             | 9.26                   | 1.000        | +0.60/+3.50 |
| 110             | 11.21                  | 1.000        | +0.70/+3.90 |
| 150             | 20.83                  | 850          | +0.80/+5.30 |
| 180             | 28.5                   | 600          | +1.00/+6.50 |

Tolerances according to DIN: Length 0/+3%

# **TECAST / TECARIM Plates**

|                                                                       | TECARIM<br>1500 yellow                                  |                                                |                                                                  |
|-----------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|
| Polymer                                                               | PA 6 C                                                  |                                                |                                                                  |
| Density [g/cm³]                                                       | 1.11                                                    |                                                |                                                                  |
| Colour                                                                | yellow<br>opaque                                        |                                                | ×                                                                |
|                                                                       |                                                         | Stock length                                   | Tolerance                                                        |
| Dimensions [mm]                                                       | []                                                      | r 1                                            | r 1                                                              |
| Duncusions [mm]                                                       | [Kg/m]                                                  | [mm]                                           | [mm]                                                             |
| 10 × 580                                                              | [kg/m]<br>7.31                                          | [mm]<br>580                                    | [mm]<br>+0.20/+1.50                                              |
| 10 × 580<br>30 × 300                                                  | 7.31<br>11.41                                           | [mm]<br>580<br>900                             | [mm]<br>+0.20/+1.50<br>+0.50/+3.50                               |
| 10 × 580<br>30 × 300<br>50 × 300                                      | 7.31<br>11.41<br>18.55                                  | [mm]<br>580<br>900<br>800                      | [mm]<br>+0.20/+1.50<br>+0.50/+3.50                               |
| 10 × 580<br>30 × 300<br>50 × 300<br>60 × 300                          | 7.31<br>11.41<br>18.55<br>22.38                         | [mm]<br>580<br>900<br>800<br>800               | [mm]<br>+0.20/+1.50<br>+0.50/+3.50<br>+0.50/+5.00                |
| 10 × 580<br>30 × 300<br>50 × 300<br>60 × 300<br>80 × 300              | [kg/m]<br>7.31<br>11.41<br>18.55<br>22.38<br>29.9       | [mm]<br>580<br>900<br>800<br>800<br>600        | [mm]<br>+0.20/+1.50<br>+0.50/+3.50<br>+0.50/+5.00<br>+0.50/+7.00 |
| 10 × 580<br>30 × 300<br>50 × 300<br>60 × 300<br>80 × 300<br>100 × 300 | 7.31<br>7.31<br>11.41<br>18.55<br>22.38<br>29.9<br>37.0 | [mm]<br>580<br>900<br>800<br>800<br>600<br>500 | [mm]<br>+0.20/+1.50<br>+0.50/+3.50<br>+0.50/+5.00<br>+0.50/+7.00 |

Tolerances according to DIN: Length 0/+3% Width +5 / +25 mm



Stock item
Non-stock item special production

| 0                       |               | <b>TECAST T</b><br>Polymer:<br>Density: 1<br>Colour: ive | <i>natural</i><br>PA 6 C<br>L.15 g/cl<br>ory opaq | m³<br>Jue |              |      |      |              |       |       |       |              |       |       |              |
|-------------------------|---------------|----------------------------------------------------------|---------------------------------------------------|-----------|--------------|------|------|--------------|-------|-------|-------|--------------|-------|-------|--------------|
| Diameter<br>Outer [mm]  | $\rightarrow$ | 50                                                       | 60                                                | 70        | 80           | 90   | 100  | 110          | 120   | 130   | 140   | 150          | 160   | 170   | 180          |
| Diameter<br>Inner [mm]  | $\downarrow$  | [kg/m]                                                   |                                                   |           |              |      |      |              |       |       |       |              |       |       |              |
|                         | 30            | 2.03                                                     | 3.27                                              | 4.63      |              |      |      |              |       |       |       |              |       |       |              |
|                         | 35            | 1.77                                                     | 3.00                                              | 4.33      | 5.67         |      |      |              |       |       |       |              |       |       |              |
|                         | 40            |                                                          | 2.70                                              | 4.03      | 5.40         | 6.90 | 8.77 |              |       |       |       |              |       |       |              |
|                         | 45            |                                                          | 2.33                                              | 3.67      | 5.03         | 6.38 | 8.40 |              |       |       |       |              |       |       |              |
|                         | 50            |                                                          |                                                   | 3.27      | 4.63         | 6.17 | 8.00 | 10.07        | 13.10 | 14.90 |       |              |       |       |              |
|                         | 55            |                                                          |                                                   | 2.80      | 4.17         | 5.73 | 7.53 | 9.60         |       |       |       |              |       |       |              |
|                         | 60            |                                                          |                                                   |           | 3.67         | 5.20 | 7.10 | 9.10         | 12.17 | 13.93 |       |              |       |       |              |
|                         | 65            |                                                          |                                                   |           | 3.13         | 4.67 | 6.57 | 8.57         | 11.63 | 13.40 | 16.47 | 19.33        |       |       |              |
|                         | 70            |                                                          |                                                   |           |              | 4.07 | 5.97 | 8.03         | 11.03 | 12.80 | 15.87 | 18.73        | 21.93 |       |              |
|                         | 75            |                                                          |                                                   |           |              |      | 5.30 | 7.40         | 10.40 | 12.17 | 15.23 | 18.10        | 21.27 |       |              |
|                         | 80            |                                                          |                                                   |           |              |      | 4.60 | 6.70         | 9.83  | 11.50 | 14.53 | 17.43        | 20.63 | 23.43 | 26.7         |
|                         | 85            |                                                          |                                                   |           |              |      |      |              | 9.10  | 10.77 | 13.83 | 16.70        | 19.93 | 22.70 | 26.0         |
|                         | 90            |                                                          |                                                   |           |              |      |      | 5.17         | 8.30  | 10.10 | 13.03 | 15.93        | 19.17 | 21.93 | 25.2         |
|                         | 95            |                                                          |                                                   |           |              |      |      |              | 7.50  | 9.27  | 12.23 | 15.10        | 18.33 | 21.13 |              |
|                         | 100           |                                                          |                                                   |           |              |      |      |              | 6.63  | 8.40  | 11.50 | 14.23        | 17.50 | 20.27 | 23.53        |
|                         | 105           |                                                          |                                                   |           |              |      |      |              |       | 7.50  | 10.57 | 13.33        | 16.57 |       |              |
|                         | 110           |                                                          |                                                   |           |              |      |      |              |       | 6.53  | 9.60  | 12.50        | 15.63 | 18.43 | 21.70        |
|                         | 115           |                                                          |                                                   |           |              |      |      |              |       | 5.53  | 8.60  | 11.50        | 14.63 |       |              |
|                         | 120           |                                                          |                                                   |           |              |      |      |              |       |       | 7.53  | 10.43        | 13.77 | 16.37 | 19.63        |
|                         | 130           |                                                          |                                                   |           |              |      |      |              |       |       |       | 8.17         | 11.50 | 14.33 | 17.40        |
|                         | 140           |                                                          |                                                   |           |              |      |      |              |       |       |       |              | 9.10  | 11.90 | 15.20        |
|                         | 150           |                                                          |                                                   |           |              |      |      |              |       |       |       |              |       |       | 12.57        |
| Tolerance<br>Outer [mm] |               |                                                          | +0.8<br>+3.0                                      |           | +0.8<br>+4.0 |      |      | +1.0<br>+5.0 |       |       |       | +1.5<br>+7.5 |       |       | +1.8<br>+9.0 |
| Tolerance<br>Inner [mm] |               |                                                          | -4.0<br>-0.8                                      |           | -4.0<br>-0.8 |      |      | -6.0<br>-1.0 |       |       |       | -7.5<br>-1.5 |       |       | -9.0<br>-1.8 |

Tolerances according to DIN: Length 0 / +3 % Stock lengths: 3,000 mm The complete range of dimensions can be looked up in our online stock program at www.ensinger-online.com

Continued on next page



TECAST T natural

| $\bigcirc$              |               | Density:<br>Colour: iv | PABC<br>1.15g/cr<br>/ory opaq | m³<br>ue |               |               |      |               |                  |       |                  |                         |               |       |                  |
|-------------------------|---------------|------------------------|-------------------------------|----------|---------------|---------------|------|---------------|------------------|-------|------------------|-------------------------|---------------|-------|------------------|
| Diameter<br>Outer [mm]  | $\rightarrow$ | 190                    | 200                           | 210      | 220           | 250           | 280* | 300*          | 325 <sup>°</sup> | 350°  | 400 <sup>ª</sup> | <b>450</b> <sup>°</sup> | 500°          | 550°  | 600 <sup>°</sup> |
| Diameter<br>Inner [mm]  | $\downarrow$  | [kg/m]                 |                               |          |               |               |      |               |                  |       |                  |                         |               |       |                  |
|                         | 90            | 29.3                   |                               |          |               |               |      |               |                  |       |                  |                         |               |       |                  |
|                         | 100           | 27.6                   | 31.4                          | 35.0     | 39.8          | 53.2          | 71.4 |               |                  |       |                  |                         |               |       |                  |
|                         | 110           | 25.8                   | 29.5                          | 33.5     | 37.9          | 51.4          | 69.6 |               |                  |       |                  |                         |               |       |                  |
|                         | 120           | 23.73                  | 27.5                          | 31.5     | 36.2          | 49.3          | 65.6 |               |                  |       |                  |                         |               |       |                  |
|                         | 130           | 21.53                  | 25.3                          | 29.2     | 34.0          | 47.1          | 63.5 |               |                  |       |                  |                         |               |       |                  |
|                         | 140           | 19.10                  | 22.87                         | 26.8     | 31.6          | 44.7          |      |               |                  |       |                  |                         |               |       |                  |
|                         | 150           | 16.73                  | 20.27                         | 24.23    | 29.0          | 42.6          |      | 72.8          | 87.9             | 104.5 |                  |                         |               |       |                  |
|                         | 160           |                        | 17.73                         | 21.43    | 26.2          | 39.8          | 58.5 | 69.9          | 85.1             | 101.7 |                  |                         |               |       |                  |
| -                       | 170           |                        |                               | 18.73    | 23.23         | 36.9          | 55.4 | 66.9          | 82.1             |       |                  |                         |               |       |                  |
|                         | 180           |                        |                               |          | 20.40         | 33.7          | 52.8 | 63.6          | 80.5             | 95.5  |                  |                         |               |       |                  |
|                         | 190           |                        |                               |          | 17.03         | 30.4          | 49.3 | 60.2          | 77.1             |       |                  |                         |               |       |                  |
|                         | 200           |                        |                               |          |               | 26.9          | 45.7 | 57.2          | 73.6             | 90.3  | 125.1            | 165.9                   |               |       |                  |
|                         | 225           |                        |                               |          |               |               | 35.8 | 47.3          | 64.6             | 80.5  | 115.4            | 156.3                   |               |       |                  |
|                         | 250           |                        |                               |          |               |               |      | 36.2          | 53.7             | 70.3  | 106.6            | 148.3                   |               | 245.2 |                  |
|                         | 275           |                        |                               |          |               |               |      |               | 41.6             | 58.0  | 94.4             | 136.2                   | 181.3         | 233.4 |                  |
|                         | 300           |                        |                               |          |               |               |      |               |                  | 44.6  | 81.9             | 125.7                   | 171.6         | 220.4 | 277.1            |
|                         | 325           |                        |                               |          |               |               |      |               |                  |       | 67.3             | 111.1                   | 157.1         | 206.2 | 262.9            |
|                         | 350           |                        |                               |          |               |               |      |               |                  |       |                  | 96.6                    | 144.8         | 194.9 | 247.5            |
|                         | 375           |                        |                               |          |               |               |      |               |                  |       |                  | 79.6                    | 127.8         | 178.3 | 228.5            |
|                         | 400           |                        |                               |          |               |               |      |               |                  |       |                  |                         | 111.2         | 164.5 | 215.5            |
|                         | 425           |                        |                               |          |               |               |      |               |                  |       |                  |                         | 91.7          | 145.5 | 196.6            |
|                         | 450           |                        |                               |          |               |               |      |               |                  |       |                  |                         |               | 127.2 | 181.1            |
|                         | 475           |                        |                               |          |               |               |      |               |                  |       |                  |                         |               | 105.7 | 159.7            |
|                         | 500           |                        |                               |          |               |               |      |               |                  |       |                  |                         |               |       | 139.4            |
| Tolerance<br>Outer [mm] |               |                        |                               |          | +2.0<br>+11.0 | +2.5<br>+12.5 |      | +3.0<br>+15.0 |                  |       | +3.0<br>+17.5    |                         | +3.0<br>+20.0 |       | +3.0<br>+25.0    |
| Tolerance<br>Inner [mm] |               |                        |                               |          | -11.0<br>-2.0 | -12.5<br>-2.5 |      | -15.0<br>-3.0 |                  |       | -17.5<br>-3.0    |                         | -20.0<br>-3.0 |       | -25.0<br>-3.0    |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

\* Stock length: 2,000 mm <sup>a</sup> Stock length: 1,000 mm

The complete range of dimensions can be looked up in our online stock program at www.ensinger-online.com



# TECADUR TECAPET

Semi-crystalline polyesters have a very high level of hardness, rigidity and strength coupled with excellent sliding characteristics and low sliding abrasion. Due to their good creep resistance, low moisture absorption and excellent dimensional stability, TECAPET or TECADUR PBT GF30 are perfectly suited for use with complex parts with extreme dimensional stability and surface quality requirements, as well as offering very good machining properties.

#### Overview of types

#### TECAPET white

(PET) Very good machining properties. High creep and abrasion resistance.

TECAPET black (PET) Good UV resistance. Very good machining properties.

TECAPET TF grey (PET TF) High abrasion resistance. Excellent sliding properties.

#### TECADUR PET natural (PET) Good machining properties. High strength.

**TECADUR PET CMP natural** (PET)  $\rightarrow$  p. 79

# TECADUR PBT GF30

natural (PBT GF) Glass fibre reinforced polyester with very high strength. High thermal dimensional stability. Minimal thermal expansion.

#### Application examples

Piston TECADUR PET natural (PET) High strength. Good creep resistance. High dimensional stability.





Roller TECAPET white (PET) High degree of stability. High creep resistance. Good mechanical properties.



# **TECADUR / TECAPET Rods**

|                 | TECAPET<br>white | TECAPET<br>black | TECAPET<br>TF grey |             |
|-----------------|------------------|------------------|--------------------|-------------|
| Polymer         | PET              | PET              | PET                |             |
| Density [g/cm³] | 1.36             | 1.39             | 1.43               |             |
| Colour          | white<br>opaque  | black<br>opaque  | grey<br>opaque     |             |
|                 |                  |                  |                    | Tolerance   |
| Diameter [mm]   | [kg/m]           | [kg/m]           | [kg/m]             | [mm]        |
| 10              | 0.118            | 0.120            | 0.124              | +0.10/+0.70 |
| 12              | 0.170            | 0.174            | 0.179              | +0.20/+0.80 |
| 14              | 0.229            | 0.234            | 0.241              |             |
| 15              | 0.262            | 0.268            | 0.275              |             |
| 16              | 0.297            | 0.303            | 0.312              |             |
| 18              | 0.373            | 0.381            | 0.392              |             |
| 20              | 0.458            | 0.468            | 0.481              |             |
| 22              | 0.556            | 0.569            | 0.585              | +0.20/+1.00 |
| 25              | 0.714            | 0.730            | 0.751              |             |
| 28              | 0.891            | 0.911            | 0.937              |             |
| 30              | 1.02             | 1.04             | 1.07               |             |
| 32              | 1.16             | 1.19             | 1.22               | +0.20/+1.20 |
| 36              | 1.47             | 1.50             | 1.54               |             |
| 40              | 1.80             | 1.84             | 1.90               |             |
| 45              | 2.29             | 2.34             | 2.40               | +0.30/+1.30 |
| 50              | 2.81             | 2.87             | 2.96               |             |
| 56              | 3.52             | 3.59             | 3.70               |             |
| 60              | 4.05             | 4.14             | 4.26               | +0.30/+1.60 |
| 65              | 4.74             | 4.84             | 4.98               |             |
| 70              | 5.48             | 5.61             | 5.77               |             |
| 75              | 6.33             | 6.47             | 6.65               | +0.40/+2.00 |
| 80              | 7.18             | 7.34             | 7.55               |             |
| 90              | 9.09             | 9.29             |                    | +0.50/+2.20 |
| 100             | 11.24            | 11.48            |                    | +0.60/+2.50 |
| 110             | 13.63            | 13.93            |                    | +0.70/+3.00 |
| 120             | 16.26            | 16.61            |                    | +0.80/+3.50 |
| 125             | 17.61            | 18.00            |                    |             |
| 130             | 19.08            | 19.51            |                    | +0.90/+3.80 |
| 135             | 20.55            | 21.01            |                    |             |
| 140             | 22.08            | 22.56            |                    |             |
| 150             | 25.4             | 25.9             |                    | +1.00/+4.20 |
| 160             | 28.9             |                  |                    | +1.00/+4.50 |
| 165             | 30.8             |                  |                    | +1.20/+5.00 |
| 180             | 36.5             |                  |                    |             |
| 200             | 45.1             |                  |                    | +1.30/+5.50 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm



# **TECADUR / TECAPET Rods**

| 6                            | TECADUR<br>PBT GF30<br>natural |             |
|------------------------------|--------------------------------|-------------|
| Polymer                      | PBT                            |             |
| Density [g/cm <sup>3</sup> ] | 1.46                           |             |
| Colour                       | grey-white<br>opaque           |             |
|                              |                                | Tolerance   |
| Diameter [mm]                | [kg/m]                         | [mm]        |
| 10                           | 0.128                          | +0.10/+0.80 |
| 12                           | 0.184                          | +0.20/+0.90 |
| 14                           | 0.248                          |             |
| 15                           | 0.283                          |             |
| 16                           | 0.320                          |             |
| 18                           | 0.402                          |             |
| 20                           | 0.494                          |             |
| 22                           | 0.603                          | +0.20/+1.20 |
| 25                           | 0.773                          |             |
| 28                           | 0.963                          |             |
| 30                           | 1.10                           |             |
| 32                           | 1.25                           |             |
| 36                           | 1.59                           | +0.20/+1.60 |
| 40                           | 1.96                           |             |
| 45                           | 2.49                           | +0.30/+2.00 |
| 50                           | 3.06                           |             |
| 56                           | 3.82                           |             |
| 60                           | 4.41                           | +0.30/+2.50 |
| 65                           | 5.16                           |             |
| 70                           | 5.96                           |             |
| 75                           | 6.88                           | +0.40/+3.00 |
| 80                           | 7.81                           |             |
| 90                           | 9.89                           | +0.50/+3.40 |
| 100                          | 12.22                          | +0.60/+3.80 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm



# **TECADUR / TECAPET Plates**

|                              | TECAPET<br>white | TECAPET<br>black | TECAPET<br>TF grey | TECADUR<br>PBT GF30<br>natural |             |
|------------------------------|------------------|------------------|--------------------|--------------------------------|-------------|
| Polymer                      | PET              | PET              | PET                | PBT                            |             |
| Density [g/cm <sup>3</sup> ] | 1.36             | 1.39             | 1.43               | 1.46                           |             |
| Colour                       | white            | black            | grey               | grey-white                     |             |
|                              | opaque           | opaque           | opaque             | opaque                         |             |
|                              |                  |                  |                    |                                | Tolerance   |
| Dimensions [mm]              | [kg/m]           | [kg/m]           | [kg/m]             | [kg/m]                         | [mm]        |
| 8×500                        | 6.18             | 7 70             | 6.50               | 6.63                           | +0.20/+1.10 |
| 10 × 500                     | /.bl             | 7.78             | 8.00               | 8.17                           |             |
| 10 × 620                     | 5.50             | 9.33             | 9 6 9              | 9.99                           | +0.30/+1.50 |
| 12×500                       | 11 36            | 11 61            | 5.05               | 5.65                           | +0.50/+1.50 |
| 16 × 500                     | 12.07            | 12.34            | 12.69              | 12.96                          |             |
| 16 × 620                     | 14.89            | 15.22            |                    |                                |             |
| 16 × 1,000*                  | 23.80            | 24.32            |                    |                                |             |
| 20 × 500                     | 14.93            | 14.82            | 15.70              | 16.03                          |             |
| 20 × 620                     | 18.41            | 18.82            |                    |                                |             |
| 20 × 1,000*                  | 29.4             | 30.1             |                    |                                |             |
| 22 × 500                     | 16.36            | 16.72            | 17.20              | 17.56                          |             |
| 25 × 500                     | 18.50            | 18.91            | 19.46              | 19.86                          |             |
| 25 × 620                     | 22.81            | 23.32            |                    |                                |             |
| 25 × 1,000 <sup>*</sup>      | 36.5             | 37.3             |                    |                                |             |
| 30 × 500                     | 22.50            | 22.33            | 23.66              | 24.16                          | +0.50/+2.50 |
| 30 × 620                     | 27.7             | 28.4             |                    |                                |             |
| 30 × 1,000*                  | 44.4             | 44.7             |                    |                                |             |
| 35 × 500                     | 26.1             | 26.7             | 27.4               | 28.0                           |             |
| 35 × 620                     | 32.2             | 32.9             |                    |                                |             |
| 35 × 1,000 <sup>*</sup>      | 51.4             | 52.5             |                    |                                |             |
| 40 × 500                     | 29.6             | 30.3             | 31.2               | 31.8                           |             |
| 40 × 620                     | 36.6             | 37.4             |                    |                                |             |
| 40 × 1,000*                  | 58.4             | 59.7             |                    |                                |             |
| 45 × 500                     | 33.2             | 34.0             | 34.9               | 35.7                           |             |
| 45 × 620                     | 41.0             | 41.9             |                    |                                |             |
| 45 × 1,000                   | 65.5             | 66.9<br>27.6     | 7 0 7              | 20.5                           |             |
| 50 × 500                     | 36.8             | 37.6             | 38.7               | 39.5                           |             |
| 50 × 620                     | 45.4             | 46.4             |                    |                                |             |
| 50 × 1,000                   | /2.5             | /4.1             |                    | 17 C                           | .0 50/.2 50 |
| 60 × 620                     | 54.6             | 55.8             |                    | 47.0                           | +0.50/+5.50 |
| 60 × 1 000*                  | 87 3             | 55.0             |                    |                                |             |
| 70 × 500                     | 51.4             | 52.6             |                    | 55.2                           |             |
| 70 × 620                     | 63.4             | 64.8             |                    |                                |             |
| 80 × 300                     |                  |                  |                    | 38.8                           | +0.50/+5.00 |
| 80 × 500                     | 59.1             | 60.4             |                    |                                |             |
| 80 × 620                     | 72.9             | 74.5             |                    |                                |             |
| 90 × 500                     | 66.3             | 67.7             |                    |                                |             |
| 90 × 620                     | 81.7             | 83.5             |                    |                                |             |
| 100 × 300                    | 44.9             |                  |                    |                                |             |
| 100 × 500                    | 73.4             | 75.0             |                    |                                |             |
| 100 × 620                    | 90.5             | 92.5             |                    |                                |             |
| 110 × 620*                   | 99.8             |                  |                    |                                | +0.50/+6.00 |
| 120 × 620*                   | 108.6            |                  |                    |                                |             |
| 130 × 620*                   | 117.4            |                  |                    |                                |             |
| 140 × 620*                   | 126.6            |                  |                    |                                | +0.50/+7.00 |
| 150 × 620*                   | 135.4            |                  |                    |                                |             |

TECADUR TECAPET

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm

\* Stock length: 1,000 mm

Stock item
Non-stock item special production



# TECANAT

Polycarbonate (PC) is an amorphous polymer with a high level of transparency. PC is characterized by high strength, rigidity and hardness. TECANAT also offers good impact strength. It is very resistant to external influences such as weather and UV-radiation.

#### Overview of types

TECANAT (PC) Highly tough and transparent. High service temperature.

TECANAT GF30 natural (PC GF) Glass fibre reinforced polycarbonate with very high strength. Low water absorption. **TECANAT MT natural** (PC)  $\rightarrow$  p. 70

**TECANAT CMP natural** (PC)  $\rightarrow$  p. 79 Application examples

Distributor block for analytical system TECANAT natural (PC) High purity. Excellent toughness. High dimensional accuracy.



Shower head TECANAT natural (PC) High degree of transparency. Good impact strength. High dimensional stability.



Fluid medium container TECANAT natural (PC) Physiologically harmless. High level of dimensional stability. Low water absorption. High degree of transparency.


## **TECANAT** Rods

|                              | TECANAT<br>natural | TECANAT<br>black | TECANAT<br>GF30 natural |             |
|------------------------------|--------------------|------------------|-------------------------|-------------|
| Polymer                      | PC                 | PC               | PC                      |             |
| Density [g/cm <sup>3</sup> ] | 1.19               | 1.19             | 1.42                    |             |
| Colour                       | white              | black            | white                   |             |
|                              | transparent        | opaque           | translucent             |             |
|                              |                    |                  |                         | Tolerance   |
| Diameter [mm]                | [kg/m]             | [kg/m]           | [kg/m]                  | [mm]        |
| 3                            | 0.011              | 0.011            |                         | +0.10/+0.70 |
| 4                            | 0.018              | 0.018            |                         |             |
| 5                            | 0.028              | 0.028            |                         |             |
| 6                            | 0.039              | 0.039            |                         |             |
|                              | 0.068              | 0.068            |                         | +0.10/+0.80 |
| 10                           | 0.104              | 0.104            | 0.124                   |             |
| 12                           | 0.150              | 0.150            | 0.179                   | +0.20/+0.90 |
| 14                           | 0.202              | 0.202            | 0.241                   |             |
| 16                           | 0.261              | 0.261            | 0.312                   |             |
| 18                           | 0.328              | 0.328            | 0.391                   |             |
| 20                           | 0.403              | 0.403            | 0.480                   |             |
| 22                           | 0.491              | 0.491            | 0.586                   | +0.20/+1.20 |
| 25                           | 0.630              | 0.630            | 0.751                   |             |
| 28                           | 0.785              | 0.785            | 0.937                   |             |
| 30                           | 0.898              | 0.898            | 1.07                    |             |
| 32                           | 1.02               | 1.02             | 1.22                    | 0.20/ 1.60  |
| 36                           | 1.30               | 1.30             | 1.55                    | +0.20/+1.60 |
| 40                           | 1.59               | 1.59             | 1.90                    | 0.20/.2.00  |
| 45                           | 2.03               | 2.03             | 2.42                    | +0.30/+2.00 |
| 50                           | 2.45               | 2.45             | 2.98                    |             |
| 50                           | 3.11               | 3.11             | 3.72                    | .0.20/.2.50 |
| 60                           | 4 20               | 4 20             | 4.23                    | +0.50/+2.50 |
| 70                           | 4.20               | 4.20             | 5.02                    |             |
| 70                           | 5.61               | 5.61             | 5.80                    | +0 /0/+3 00 |
| 20                           | 5.01               | 5.01             | 7 59                    | +0.40/+5.00 |
| 90                           | 8.06               | 8.06             | 9.62                    | +0 50/+3 40 |
| 100                          | 9.96               | 9.96             | 11.88                   | +0.60/+3.80 |
| 110                          | 12.05              | 12.05            | 14.38                   | +0.70/+4.20 |
| 120                          | 14.35              | 14.35            | 17.13                   | +0.80/+4.60 |
| 125                          | 15.55              | 15.55            | 18.55                   |             |
| 130                          | 16.90              | 16.90            | 20.17                   | +0.90/+5.40 |
| 135                          | 18.19              | 18.19            | 21.71                   | <b>,</b>    |
| 140                          | 19.54              | 19.54            | 23.31                   |             |
| 150                          | 22.43              | 22.43            | 26.8                    | +1.00/+5.80 |
| 165                          | 27.3               | 27.3             |                         | +1.20/+7.40 |
| 180                          | 32.4               | 32.4             |                         | ,           |
| 200                          | 40.0               | 40.0             |                         | +1.30/+8.50 |
| 210                          | 44.1               | 44.1             |                         | +1.30/+9.00 |
| 230                          | 52.9               | 52.9             |                         | +1.50/+9.50 |
| 250                          | 62.2               | 62.2             |                         |             |
|                              |                    |                  |                         |             |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm



special production

Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## **TECANAT** Plates

|                 | TECANAT<br>natural   | TECANAT<br>black | TECANAT<br>GF30 natural |             |
|-----------------|----------------------|------------------|-------------------------|-------------|
| Polymer         | PC                   | PC               | PC                      |             |
| Density [g/cm³] | 1.19                 | 1.19             | 1.42                    |             |
| Colour          | white<br>transparent | black<br>opaque  | white<br>translucent    |             |
|                 |                      |                  |                         | Tolerance   |
| Dimensions [mm] | [kg/m]               | [kg/m]           | [kg/m]                  | [mm]        |
| 10 × 500        | 6.66                 | 6.66             | 7.94                    | +0.20/+1.10 |
| 10×620          | 8.21                 | 8.21             | 9.80                    |             |
| 12 × 500        | 8.06                 | 8.06             | 9.62                    | +0.30/+1.50 |
| 12 × 620        | 9.94                 | 9.94             | 11.86                   |             |
| 16 × 500        | 10.56                | 10.56            | 12.61                   |             |
| 16 × 620        | 13.03                | 13.03            | 15.54                   |             |
| 18 × 500        | 11.81                | 11.81            | 14.10                   |             |
| 18 × 620        | 14.57                | 14.57            | 17.38                   |             |
| 20 × 500        | 13.06                | 13.06            | 15.59                   |             |
| 20 × 620        | 16.11                | 16.11            | 19.22                   |             |
| 22 × 500        | 14.31                | 14.31            | 17.08                   |             |
| 22 × 620        | 17.65                | 17.65            | 21.06                   |             |
| 25 × 500        | 16.19                | 16.19            | 19.32                   |             |
| 25 × 620        | 19.96                | 19.96            | 23.82                   |             |
| 30 × 500        | 19.69                | 19.69            | 23.50                   | +0.50/+2.50 |
| 30 × 620        | 24.28                | 24.28            | 29.0                    |             |
| 36 × 500        | 23.44                | 23.44            | 28.0                    |             |
| 36 × 620        | 28.9                 | 28.9             | 34.5                    |             |
| 40 × 500        | 25.9                 | 25.9             | 31.0                    |             |
| 40 × 620        | 32.0                 | 32.0             | 38.2                    |             |
| 45 × 500        | 29.1                 | 29.1             | 34.7                    |             |
| 45 × 620        | 35.8                 | 35.8             | 42.8                    |             |
| 50 × 500        | 32.2                 | 32.2             | 38.4                    |             |
| 50 × 620        | 39.7                 | 39.7             | 47.4                    |             |
| 60 × 500        | 38.8                 | 38.8             | 46.2                    | +0.50/+3.50 |
| 60 × 620        | 47.8                 | 47.8             | 57.0                    |             |
| 70 × 500        | 45.0                 | 45.0             | 53.7                    |             |
| 70 × 620        | 55.5                 | 55.5             | 66.2                    |             |
| 80 × 500        | 51.7                 | 51.7             | 61.7                    | +0.50/+5.00 |
| 80 × 620        | 63.8                 | 63.8             | 76.1                    |             |
| 90 × 500        | 58.0                 | 58.0             |                         |             |
| 90 × 620        | 71.5                 | 71.5             |                         |             |
| 100 × 300       | 39.3                 | 39.3             |                         |             |
| 100 × 500       | 64.2                 | 64.2             |                         |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm



Modifications in colour and diameter on request. Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com



# TECAFLON

Fluoropolymers have excellent, almost universal resistance to chemicals. They can be used both at high and very low temperatures (-260 °C to +260 °C). In addition, TECAFLON PVDF and TECAFLON PTFE possess outstand-

ing resistance to weathering (UV resistance). Due to the low coefficient of friction, they are often used as sliding materials or as corresponding additives in other high-performance plastics.

#### Overview of types

properties.

TECAFLON PVDF natural (PVDF) Good chemical resistance and high level of strength. Very good welding

TECAFLON PTFE natural (PTFE) Exceptional chemical resistance. Particularly low coefficient of friction. Ideally suited for soft mating partners.

#### On request:

**TECAFLON PVDF ELS black** (PVDF, conductive carbon) → page 84

TECAFLON PTFE GF25 natural (PTFE GF) Glass fibre-reinforced stock shapes with improved strength. Good machining properties.

TECAFLON ETFE natural (E/TFE) Minimal moisture absorption. High service temperature.

#### Application examples

Support TECAFLON PTFE natural (PTFE) Very good UV resistance. Good electrical insulation. High degree of toughness.



Die TECAFLON PTFE natural (PTFE) Excellent chemical resistance. Low coefficient of friction. No slip-stick effect.

Valve body TECAFLON PVDF natural (PVDF) Good chemical resistance. High degree of toughness and strength.



## **TECAFLON** Rods

| $\langle \rangle$ | TECAFLON<br>PTFE natural |              |
|-------------------|--------------------------|--------------|
|                   |                          |              |
| Polymer           | PTFE                     |              |
| Density [g/cm³]   | 2.15                     |              |
| Colour            | white                    |              |
|                   | opaque                   | <b>T</b> 1   |
| Diamotor [mm]     | [ka/m]                   | Iolerance    |
|                   | 0.030                    | ±0 00/±0 30  |
|                   | 0.050                    | 10.00/10.00  |
| 6                 | 0.040                    | +0 00/+0 40  |
|                   | 0.000                    | 10.00, 10.10 |
| 10                | 0.182                    |              |
| 12                | 0.269                    | +0.00/+0.80  |
|                   | 0.362                    |              |
| 15                | 0.414                    |              |
| 16                | 0.470                    |              |
| 18                | 0.591                    |              |
| 20                | 0.727                    |              |
|                   | 0.892                    | +0.00/+1.20  |
|                   | 1.13                     |              |
| 28                | 1.43                     |              |
| 30                | 1.62                     | +0.00/+1.60  |
| 32                | 1.88                     |              |
| 35                | 2.24                     |              |
| 40                | 2.94                     | +0.00/+2.00  |
| 45                | 3.70                     |              |
| 50                | 4.54                     |              |
| 55                | 5.54                     | +0.00/+2.60  |
| 60                | 6.56                     |              |
| 65                | 7.70                     | +0.00/+2.80  |
| 70                | 8.90                     |              |
| 75                | 10.25                    | +0.00/+3.20  |
| 80                | 11.63                    |              |
| 90                | 14.65                    |              |
| 100               | 18.17                    | +0.00/+4.00  |
| 110               | 21.91                    |              |
| 120               | 26.0                     |              |
| 130               | 30.4                     |              |
| 140               | 35.7                     | +0.00/+6.00  |
| 150               | 40.9                     |              |
| 160               | 46.4                     |              |

| natural           Polymer         PVDF           Density [g/cm³]         1.78           Colour         white<br>opaque           Diameter [mm]         [kg/m]         [mm]           4         0.027         +0.10/+0.60           5         0.041         6         0.057           8         0.101         +0.10/+0.70         9           9         0.126         10         14           10         0.154         12         0.223         +0.20/+0.80           115         0.343         16         0.388         18         0.488           20         0.599         22         0.728         +0.20/+1.00           225         0.935         1.82         1.17         30         1.34           30         1.34         32         1.52         +0.20/+1.00           255         0.935         1.82         400         2.36           40         2.36         1.17         30         1.30           32         1.52         +0.30/+1.30         1.60         5.6           60         5.30         +0.30/+1.30         1.60         5.6           60         5.30         +0.30/+1 | $\cap$          | PVDF    |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-------------|
| Polymer         PVDF           Density [g/cm³]         1.78           Colour         white<br>opaque           Diameter [mm]         [kg/m]         [mm]           4         0.027         +0.10/+0.60           5         0.041         -           6         0.057         -           8         0.101         +0.10/+0.70           9         0.126         -           10         0.154         -           110         0.154         -           12         0.223         +0.20/+0.80           15         0.343         -           20         0.599         -           22         0.728         +0.20/+1.00           25         0.935         -           20         0.599         -           22         0.728         +0.20/+1.20           30         1.34         -           30         1.34         -           315         1.82         -           35         1.82         -           36         5.6         -           30         1.34         -           30         1.36         -     <                                                                                 |                 | natural |             |
| Density [g/cm³]         1.78           Colour         white<br>opaque           Colour         white<br>opaque           Diameter [mm]         [kg/m]         [mm]           4         0.027         +0.10/+0.60           5         0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polymer         | PVDF    |             |
| Colour         white<br>opaque           Tolerance           Diameter [mm]         [kg/m]         [mm]           4         0.027         +0.10/+0.60           5         0.041         -           6         0.057         -           8         0.101         +0.10/+0.70           9         0.126         -           10         0.154         -           112         0.223         +0.20/+0.80           115         0.343         -           12         0.223         +0.20/+1.00           20         0.599         -           20         0.599         -           212         0.728         +0.20/+1.00           22         0.728         +0.20/+1.00           23         1.52         +0.20/+1.20           35         1.82         -           30         1.34         -           30         1.34         -           315         2.89         +0.30/+1.30           35         1.82         -           30         3.68         -           30         1.30         -           35         6.20                                                                               | Density [g/cm³] | 1.78    |             |
| Copaque         Tolerance           Diameter [mm]         [kg/m]         [mm]           4         0.027         +0.10/+0.60           5         0.041         -           6         0.057         -           8         0.101         +0.10/+0.70           9         0.126         -           10         0.154         -           112         0.223         +0.20/+0.80           115         0.343         -           16         0.388         -           20         0.599         -           20         0.599         -           22         0.728         +0.20/+1.00           25         0.935         -           28         1.17         -           30         1.34         -           30         1.34         -           30         1.34         -           30         1.34         -           30         1.34         -           30         1.34         -           30         1.34         -           30         1.36         -           30         1.36         - <th>Colour</th> <th>white</th> <th></th>                                                           | Colour          | white   |             |
| Diameter [mm]         [kg/m]         [mm]           4         0.027         +0.10/+0.60           5         0.041         -           6         0.057         -           8         0.101         +0.10/+0.70           9         0.126         -           10         0.154         -           12         0.23         +0.20/+0.80           15         0.343         -           16         0.388         -           20         0.599         -           20         0.599         -           22         0.728         +0.20/+1.00           25         0.935         -           30         1.34         -           30         1.34         -           30         1.34         -           30         1.34         -           315         1.62         -           30         1.34         -           30         1.34         -           30         1.34         -           30         3.36         -           30         3.30         -           30         9.40         <                                                                                                      |                 | opaque  |             |
| Diameter [mm]         [kg/m]         [mm]           4         0.027         +0.10/+0.60           5         0.041           6         0.057           8         0.101         +0.10/+0.70           9         0.126           10         0.154           12         0.223         +0.20/+0.80           15         0.343           16         0.388           18         0.488           20         0.599           22         0.728           10         1.34           30         1.34           30         1.34           32         1.52           40         2.36           40         2.36           40         2.36           40         2.36           50         3.68           55         4.60           60         5.30           70         7.18           70         7.18           75         8.28           90         11.90           120         21.28           130         24.98           140         28.9           <                                                                                                                                                     |                 |         | Tolerance   |
| 4         0.027         +0.10/+0.60           5         0.041           6         0.057           8         0.101         +0.10/+0.70           9         0.126           10         0.154           12         0.223         +0.20/+0.80           15         0.343           16         0.388           18         0.488           20         0.599           22         0.728           10         1.34           30         1.34           30         1.34           31         1.6           30         1.34           30         1.34           31         1.6           30         1.34           30         1.34           30         1.34           31         1.6           30         1.34           30         1.34           30         1.34           31         1.6           30         3.4           31         1.6           32         1.52           33         1.8           40         2.8 <t< th=""><th>Diameter [mm]</th><th>[kg/m]</th><th>[mm]</th></t<>                                                                                                             | Diameter [mm]   | [kg/m]  | [mm]        |
| 5         0.041           6         0.057           8         0.101         +0.10/+0.70           9         0.126           10         0.154           12         0.223         +0.20/+0.80           15         0.343           16         0.388           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52         +0.20/+1.20           35         1.82           40         2.36           40         2.36           50         3.68           56         4.60           60         5.30           70         7.18           70         7.18           70         7.18           90         11.90           90         11.90           100         14.71           90         11.91           120         21.28           130         24.98           130         24.98           130         24.98                                                                                                                                                                | 4               | 0.027   | +0.10/+0.60 |
| 6         0.057           8         0.101         +0.10/+0.70           9         0.126           10         0.154           12         0.223         +0.20/+0.80           15         0.343           16         0.388           18         0.488           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52           40         2.36           40         2.36           40         2.36           40         2.36           50         3.68           56         4.60           60         5.30           70         7.18           75         8.28           90         11.90           100         14.71           90         11.90           120         21.28           130         24.98           130         24.98           130         24.98           130         24.98           135         26                                                                                                                                                         | 5               | 0.041   |             |
| 8         0.101         +0.10/+0.70           9         0.126           10         0.154           12         0.223         +0.20/+0.80           15         0.343           16         0.388           18         0.488           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52           40         2.36           40         2.36           40         2.36           40         2.36           50         3.68           56         4.60           60         5.30           56         4.60           60         5.30           70         7.18           75         8.28           90         11.90           100         14.71           90         11.90           120         21.28           130         24.98           130         24.98           140         28.9           150         33.2<                                                                                                                                                         | 6               | 0.057   |             |
| 9         0.126           10         0.154           12         0.223         +0.20/+0.80           15         0.343           16         0.388           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52           40         2.36           40         2.36           40         2.36           45         2.99           +0.30/+1.30           50         3.68           56         4.60           60         5.30           70         7.18           75         8.28           90         11.90           100         14.71           100         14.71           110         17.84           90         11.90           120         21.28           130         24.98           130         24.98           140         28.9           150         33.2           150         33.2           16                                                                                                                                                                 |                 | 0.101   | +0.10/+0.70 |
| 10         0.154           12         0.223         +0.20/+0.80           15         0.343           16         0.388           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52           40         2.36           40         2.36           45         2.99           50         3.68           56         4.60           60         5.30           70         7.18           75         8.28           90         11.90           90         11.90           90         11.90           100         14.71           90         11.90           120         21.28           130         24.98           130         24.98           140         28.9           150         33.2           130         24.98           140         28.9           150         33.2           160         37.8                                                                                                                                                                        | 9               | 0.126   |             |
| 12         0.223         +0.20/+0.80           15         0.343           16         0.388           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52         +0.20/+1.20           35         1.82           40         2.36           45         2.99         +0.30/+1.30           50         3.68           56         4.60           60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05         130           130         24.98         +0.90/+3.80           135         26.9         140           140         28.9         150 </th <th>10</th> <th>0.154</th> <th></th>                                               | 10              | 0.154   |             |
| 15         0.343           16         0.388           18         0.488           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52           40         2.36           40         2.36           40         2.36           45         2.99           56         4.60           60         5.30           70         7.18           75         8.28           90         11.90           90         11.90           90         11.90           110         17.84           90         12.02           120         21.28           9130         24.98           130         24.98           130         24.98           130         24.98           130         24.98           130         24.98           130         24.98           130         24.98           140         28.9           135                                                                                                                                                                        | 12              | 0.223   | +0.20/+0.80 |
| 16         0.388           18         0.488           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52           40         2.36           40         2.36           45         2.99           56         4.60           60         5.30           70         7.18           70         7.18           70         7.18           90         11.90           90         11.90           90         12.93           110         17.84           90         12.93           120         21.28           9130         24.98           130         24.98           130         24.98           130         24.98           130         24.98           130         24.98           130         24.98           130         24.98           140         28.9           150         33.2           160                                                                                                                                                                        | 15              | 0.343   |             |
| 18         0.488           20         0.599           22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52         +0.20/+1.20           35         1.82           40         2.36           41         2.99         +0.30/+1.30           50         3.68           56         4.60           60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           131         24.98         +0.90/+3.80           132         26.9         140           133         26.9         140           140         28.9         10.0/+4.20           165         40.3         +1.20/+5.00           180         47.8                                                                                   | 16              | 0.388   |             |
| 20         0.599           22         0.728         +0.20/+1.00           25         0.935         +0.20/+1.00           28         1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18              | 0.488   |             |
| 22         0.728         +0.20/+1.00           25         0.935           28         1.17           30         1.34           32         1.52         +0.20/+1.20           35         1.82           40         2.36           45         2.99         +0.30/+1.30           56         4.60           56         4.60           60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05         1125           130         24.98         +0.90/+3.80           135         26.9         140           140         28.9         150           150         33.2         +1.00/+4.20           165         40.3         +1.20/+5.00           180         47.8         200 <tr< th=""><th>20</th><th>0.599</th><th></th></tr<>                               | 20              | 0.599   |             |
| 25         0.935           28         1.17           30         1.34           32         1.52         +0.20/+1.20           35         1.82           40         2.36           45         2.99         +0.30/+1.30           50         3.68           56         4.60           60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05         1130           130         24.98         +0.90/+3.80           135         26.9         140           140         28.9         150           150         33.2         +1.00/+4.20           165         40.3         +1.20/+5.00           180         47.8         1.20/+5.00           210'         65.0         +1.30/+5.50                                                                           | 22              | 0.728   | +0.20/+1.00 |
| 28         1.17           30         1.34           32         1.52         +0.20/+1.20           35         1.82           40         2.36           45         2.99         +0.30/+1.30           50         3.68           56         4.60           60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05         130           130         24.98         +0.90/+3.80           135         26.9         140           140         28.9         150           150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8         200           230'         78.0         +1.50                                                                     | 25              | 0.935   |             |
| 30         1.34           32         1.52         +0.20/+1.20           35         1.82           40         2.36           45         2.99           50         3.68           56         4.60           60         5.30           70         7.18           75         8.28           90         11.90           90         11.90           90         11.90           100         14.71           90         11.90           110         17.84           90         11.90           120         21.28           130         24.98           130         24.98           135         26.9           140         28.9           150         33.2           150         33.2           160         37.8           160         37.8           180         47.8           200         59.0           210'         65.0           40.3         +1.50/+6.20           230'         78.0           230'         78.0           150                                                                                                                                                                  | 28              | 1.17    |             |
| 32         1.52         +0.20/+1.20           35         1.82           40         2.36           45         2.99           50         3.68           56         4.60           60         5.30           70         7.18           75         8.28           90         11.90           90         11.90           90         14.71           90         120           110         17.84           40.80/+3.50           120         21.28           130         24.98           40.90/+3.80           135         26.9           140         28.9           140         28.9           150         33.2           160         37.8           165         40.3           41.20/+5.00           180         47.8           200         59.0           210'         65.0           230'         78.0           230'         78.0           230'         78.0           155.0         51.30/+5.80           230'         78.0      <                                                                                                                                                             | 30              | 1.34    |             |
| 35         1.82           40         2.36           45         2.99           50         3.68           56         4.60           60         5.30           70         7.18           75         8.28           90         11.90           90         11.90           100         14.71           400/+2.50           110         17.84           40.80/+3.50           120         21.28           130         24.98           40.90/+3.80           135         26.9           140         28.9           150         33.2           160         37.8           110/+4.50           165         40.3           47.8           200         59.0           130         24.98           150         33.2           140         28.9           150         33.2           165         40.3           41.20/+5.00           180         47.8           200         59.0           210'         65.0           230'                                                                                                                                                                                | 32              | 1.52    | +0.20/+1.20 |
| 40         2.36           45         2.99         +0.30/+1.30           50         3.68           56         4.60           60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05            130         24.98         +0.90/+3.80           135         26.9            140         28.9            150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8            200         59.0         +1.30/+5.80           230'         78.0         +1.50/+6.20           230'         78.0         +1.50/+6.20           250'         91.9 <th>35</th> <th>1.82</th> <th></th>                                                                        | 35              | 1.82    |             |
| 45         2.99         +0.30/+1.30           50         3.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40              | 2.36    |             |
| 50         3.68           56         4.60           60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05            130         24.98         +0.90/+3.80           135         26.9            140         28.9            150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8            200         59.0         +1.30/+5.50           210'         65.0         +1.30/+5.80           230'         78.0         +1.50/+6.20           250'         91.9                                                                                                                                                                                    | 45              | 2.99    | +0.30/+1.30 |
| 56         4.60           60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50              | 3.68    |             |
| 60         5.30         +0.30/+1.60           65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56              | 4.60    |             |
| 65         6.20           70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60              | 5.30    | +0.30/+1.60 |
| 70         7.18           75         8.28         +0.40/+2.00           80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65              | 6.20    |             |
| 75       8.28       +0.40/+2.00         80       9.40         90       11.90       +0.50/+2.20         100       14.71       +0.60/+2.50         110       17.84       +0.70/+3.00         120       21.28       +0.80/+3.50         125       23.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70              | 7.18    |             |
| 80         9.40           90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05           130         24.98         +0.90/+3.80           135         26.9           140         28.9           160         37.8         +1.10/+4.20           165         40.3         +1.20/+5.00           180         47.8         200         59.0         +1.30/+5.50           210'         65.0         +1.30/+5.80         230'         78.0         +1.50/+6.20           230'         78.0         +1.50/+6.20         230'         78.0         +1.50/+6.60                                                                                                                                                                                                                                                                                                                                                                             |                 | 8.28    | +0.40/+2.00 |
| 90         11.90         +0.50/+2.20           100         14.71         +0.60/+2.50           110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80              | 9.40    |             |
| 100       14.71       +0.60/+2.50         110       17.84       +0.70/+3.00         120       21.28       +0.80/+3.50         125       23.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90              | 11.90   | +0.50/+2.20 |
| 110         17.84         +0.70/+3.00           120         21.28         +0.80/+3.50           125         23.05           130         24.98         +0.90/+3.80           135         26.9           140         28.9           150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8           200         59.0         +1.30/+5.50           210'         65.0         +1.30/+5.80           230'         78.0         +1.50/+6.20           250'         91.9         280'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100             | 14.71   | +0.60/+2.50 |
| 120       21.28       +0.80/+3.50         125       23.05         130       24.98       +0.90/+3.80         135       26.9         140       28.9         150       33.2       +1.00/+4.20         160       37.8       +1.10/+4.50         165       40.3       +1.20/+5.00         180       47.8         200       59.0       +1.30/+5.50         210'       65.0       +1.30/+5.80         230'       78.0       +1.50/+6.20         250'       91.9       115.1         280'       115.1       +1.50/+6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110             | 17.84   | +0./0/+3.00 |
| 125         23.05           130         24.98         +0.90/+3.80           135         26.9           140         28.9           150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8           200         59.0         +1.30/+5.50           210'         65.0         +1.30/+5.80           230'         78.0         +1.50/+6.20           250'         91.9         115.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120             | 21.28   | +0.80/+3.50 |
| 130         24.98         +0.90/+3.80           135         26.9           140         28.9           150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8           200         59.0         +1.30/+5.50           210°         65.0         +1.30/+5.80           230°         78.0         +1.50/+6.20           250°         91.9         280°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125             | 23.05   |             |
| 135         26.9           140         28.9           150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8           200         59.0         +1.30/+5.50           210'         65.0         +1.30/+5.80           230'         78.0         +1.50/+6.20           250'         91.9         280'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130             | 24.98   | +0.90/+3.80 |
| 140         28.9           150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8           200         59.0         +1.30/+5.50           210°         65.0         +1.30/+5.80           230°         78.0         +1.50/+6.20           250°         91.9         280°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 135             | 26.9    |             |
| 150         33.2         +1.00/+4.20           160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8           200         59.0         +1.30/+5.50           210°         65.0         +1.30/+5.80           230°         78.0         +1.50/+6.20           250°         91.9         280°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140             | 28.9    |             |
| 160         37.8         +1.10/+4.50           165         40.3         +1.20/+5.00           180         47.8           200         59.0         +1.30/+5.50           210°         65.0         +1.30/+5.80           230°         78.0         +1.50/+6.20           250°         91.9         280°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150             | 33.2    | +1.00/+4.20 |
| 165         40.3         +1.20/+5.00           180         47.8           200         59.0         +1.30/+5.50           210'         65.0         +1.30/+5.80           230'         78.0         +1.50/+6.20           250'         91.9         280'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160             | 37.8    | +1.10/+4.50 |
| 180         47.8           200         59.0         +1.30/+5.50           210°         65.0         +1.30/+5.80           230°         78.0         +1.50/+6.20           250°         91.9         280°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 165             | 40.3    | +1.20/+5.00 |
| ZUU         59.0         +1.30/+5.50           210°         65.0         +1.30/+5.80           230°         78.0         +1.50/+6.20           250°         91.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180             | 47.8    | 1 20 / 5 55 |
| 210         65.0         +1.30/+5.80           230'         78.0         +1.50/+6.20           250'         91.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200             | 59.0    | +1.30/+5.50 |
| 230         /8.0         +1.50/+6.20           250'         91.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 210             | 65.0    | +1.30/+5.80 |
| <b>250</b> 91.9<br><b>280°</b> 115.1 +1.50/+6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 230             | /8.0    | +1.50/+6.20 |
| <b>280</b> 115.1 +1.50/+6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250             | 91.9    | 1 50 / 5 55 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 280             | 115.1   | +1.50/+6.60 |

**TECAFLON** Rods

TECAFLON

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

\* Stock length: 1,000 mm



Non-stock item special production

Tolerances according to DIN:

Tolerance based on GKV according to manufacturer's specifications.

GF25 and CF25 available on request.

Length 0/+3% Stock lengths: 2,000 mm

> Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## **TECAFLON** Plates

|                 | TECAFLON<br>PTFE natural |             |
|-----------------|--------------------------|-------------|
| Polymer         | PTFE                     |             |
| Density [g/cm³] | 2.15                     |             |
| Colour          | white<br>opaque          |             |
|                 |                          | Tolerance   |
| Dimensions [mm] | [kg/m]                   | [mm]        |
| 1×1,200         | 2.78                     | +0.00/+0.05 |
| 2×1,200         | 5.70                     | +0.00/+0.20 |
| 3×1,200         | 9.22                     | +0.00/+0.80 |
| 4×1,200         | 11.94                    |             |
| 5 × 1,200       | 14.65                    |             |
| 6×1,200         | 17.36                    |             |
| 8×1,200         | 23.33                    | +0.00/+1.20 |
| 10×1,200        | 28.8                     |             |
| 12 × 1,200      | 35.3                     | +0.00/+2.00 |
| 15 × 1,200      | 43.4                     |             |
| 20 × 1,200      | 57.0                     |             |
| 25 × 1,200      | 70.5                     |             |
| 30 × 1,200      | 85.5                     | +0.00/+3.00 |
| 40 × 1,200      | 112.6                    |             |
| 50 × 1,200      | 139.7                    |             |
| 60 × 1,200      | 166.8                    |             |
| 70 × 1,200      | 194.0                    |             |
| 80×1,200        | 221.1                    |             |
| 90 × 1,200      | 250.9                    | +0.00/+5.00 |
| 100 × 1,200     | 278.1                    |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 1,200 mm

Tolerance based on GKV according to manufacturer's specifications.

GF30 available on request.

## **TECAFLON** Plates

| $\langle \rangle$       |         |             |
|-------------------------|---------|-------------|
|                         | natural |             |
| Polymer                 | PVDF    |             |
| Density [g/cm³]         | 1.78    |             |
| Colour                  | white   |             |
|                         | opaque  |             |
|                         |         | Tolerance   |
| Dimensions [mm]         | [kg/m]  | [mm]        |
| 10 × 500                | 9.96    | +0.20/+1.10 |
| 10 × 620                | 12.28   |             |
| 10 × 1,000*             | 19.63   |             |
| 15 × 500                | 14.87   | +0.30/+1.50 |
| 15 × 620                | 18.33   |             |
| 15 × 1,000 <sup>*</sup> | 29.3    |             |
| 20 × 500                | 19.54   |             |
| 20 × 620                | 24.10   |             |
| 20 × 1,000*             | 38.5    |             |
| 25 × 500                | 24.22   |             |
| 25 × 620                | 29.9    |             |
| 25 × 1,000 <sup>*</sup> | 47.7    |             |
| 30 × 500                | 29.5    | +0.50/+2.50 |
| 30 × 620                | 36.3    |             |
| 30 × 1,000*             | 58.0    |             |
| 36 × 500                | 35.1    |             |
| 36 × 620                | 43.2    |             |
| 36 × 1,000 <sup>*</sup> | 69.1    |             |
| 40 × 500                | 38.8    |             |
| 40 × 620                | 47.8    |             |
| 40 × 1,000*             | 76.5    |             |
| 45 × 500                | 43.5    |             |
| 45 × 620                | 53.6    |             |
| 50 × 500                | 48.2    |             |
| 50 × 620                | 59.4    |             |
| 60 × 300                | 35.5    | +0.50/+3.50 |
| 60 × 500                | 58.0    |             |
| 70 × 300                | 41.2    |             |
| 70 × 500                | 67.3    |             |
| 80 × 300                | 47.3    | +0.50/+5.00 |
| 80 × 500                | 77.4    |             |
| 90 × 300                | 53.0    |             |
| 90 × 500                | 86.7    |             |
| 100 × 300               | 58.8    |             |
| 100 × 500               | 96.1    |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm

\* Stock length: 2,000 mm



Non-stock item special production Modifications in colour and diameter on request. Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com



Polyarylsulphones (PSU, PPSU) are a family of thermoplastic, amorphous and polar polymers. Even at high temperatures, TECASON P, TECASON E or TECASON S demonstrate high strength and stability. Polyetherimide (PEI), an amorphous thermoplastic from the polyimide group, is very similar to polysulphones. It is frequently used in the electrotechnical industry.

#### Overview of types

## TECASON S natural

(PSU) High frequency resistant plastic. Translucent. Suitable for contact with food.

## TECASON E natural

(PES) Good electrical insulating properties. Translucent. Hydrolysis-resistant. TECASON P (PPSU) Material suitable for super heated steam sterilization. High thermal dimensional stability.

TECASON P MT coloured (PPSU)  $\rightarrow$  p. 70

 $\begin{array}{l} \textbf{TECASON P MT XRO} \\ \textbf{coloured} \\ (PPSU) \\ \rightarrow p. \ 70 \end{array}$ 

#### **TECAPEI** (PEI)

Long-term service temperature up to 170 °C. Resistance to high-energy radiation.

TECAPEI GF30 (PEI GF) High thermal and mechanical load capacity. Resistance to high-energy radiation.

**TECAPEI MT** (PEI)  $\rightarrow$  p. 70

#### Application examples

Control panel for dialysis system TECASON E natural (PES) Good sterilization resistance. Free from surface burrs. High degree of transparency.

Dispensing plunger for water analysis TECASON S natural (PSU) High transparency for optical control. Good dimensional stability. Resistance to disinfectant and cleaning agents.



Knee cap trial implant TECASON P MT green (PPSU) Resistant to steam sterilisation. Biocompatible.



## **TECASON / TECAPEI Rods**

| 6               | TECASON<br>S natural | TECASON<br>E natural | TECASON<br>P natural | TECAPEI<br>natural   | TECAPEI<br>GF30 natural |             |
|-----------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|
| Polymer         | PSU                  | PES                  | PPSU                 | PEI                  | PEI                     |             |
| Density [g/cm³] | 1.24                 | 1.37                 | 1.29                 | 1.28                 | 1.51                    |             |
| Colour          | amber<br>transparent | amber<br>transparent | amber<br>transparent | amber<br>transparent | amber<br>opaque         |             |
|                 |                      |                      |                      |                      |                         | Tolerance   |
| Diameter [mm]   | [kg/m]               | [kg/m]               | [kg/m]               | [kg/m]               | [kg/m]                  | [mm]        |
| 8               | 0.071                | 0.078                | 0.074                | 0.073                |                         | +0.10/+0.80 |
| 10              | 0.108                | 0.120                | 0.113                | 0.112                |                         |             |
| 12              | 0.156                | 0.173                | 0.163                | 0.162                |                         | +0.20/+0.90 |
| 16              | 0.272                | 0.301                | 0.283                | 0.281                |                         |             |
| 20              | 0.420                | 0.463                | 0.436                | 0.433                | 0.511                   |             |
| 22              | 0.512                | 0.566                | 0.533                | 0.528                | 0.623                   | +0.20/+1.20 |
| 25              | 0.656                | 0.725                | 0.683                | 0.677                | 0.799                   |             |
| 30              | 0.936                | 1.03                 | 0.974                | 0.966                | 1.14                    |             |
| 32              | 1.06                 | 1.17                 | 1.11                 | 1.10                 | 1.29                    |             |
| 36              | 1.35                 | 1.49                 | 1.41                 | 1.40                 | 1.65                    | +0.20/+1.60 |
| 40              | 1.66                 | 1.84                 | 1.73                 | 1.72                 | 2.02                    |             |
| 45              | 2.12                 | 2.34                 | 2.20                 | 2.18                 | 2.58                    | +0.30/+2.00 |
| 50              | 2.60                 | 2.87                 | 2.70                 | 2.68                 | 3.16                    |             |
| 56              | 3.24                 | 3.58                 | 3.38                 | 3.35                 |                         |             |
| 60              | 3.74                 | 4.14                 | 3.90                 | 3.87                 | 4.56                    | +0.30/+2.50 |
| 70              | 5.06                 | 5.60                 | 5.27                 | 5.23                 |                         |             |
| 80              | 6.63                 | 7.33                 | 6.90                 | 6.84                 |                         | +0.40/+3.00 |
| 90              | 8.40                 | 9.28                 | 8.74                 | 8.67                 |                         | +0.50/+3.40 |
| 100             | 10.38                | 11.46                | 10.79                | 10.71                |                         | +0.60/+3.80 |
| 110             | 12.56                | 13.88                | 13.07                | 12.97                |                         | +0.70/+4.20 |
| 120             | 14.96                | 16.52                | 15.56                | 15.44                |                         | +0.80/+4.60 |
| 125             | 16.20                | 17.90                | 16.85                | 16.72                |                         |             |
| 135             | 18.96                | 20.95                | 19.72                | 19.57                |                         | +0.90/+5.40 |
| 140             | 20.36                | 22.49                | 21.18                | 21.01                | -                       |             |
| 150             | 23.38                | 25.8                 | 24.32                | 24.13                |                         | +1.00/+5.80 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

**Modifications in colour and diameter on request.** Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## **TECASON / TECAPEI Plates**

|                 | TECASON<br>S natural | TECASON<br>E natural | TECASON<br>P natural | TECAPEI<br>natural   | TECAPEI<br>GF30 natural |             |
|-----------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------|
| Polymer         | PSU                  | PES                  | PPSU                 | PEI                  | PEI                     |             |
| Density [g/cm³] | 1.24                 | 1.37                 | 1.29                 | 1.28                 | 1.51                    |             |
| Colour          | amber<br>transparent | amber<br>transparent | amber<br>transparent | amber<br>transparent | amber<br>opaque         |             |
|                 |                      |                      |                      |                      |                         | Tolerance   |
| Dimensions [mm] | [kg/m]               | [kg/m]               | [kg/m]               | [kg/m]               | [kg/m]                  | [mm]        |
| 10×300          | 4.24                 | 4.69                 | 4.41                 | 4.38                 |                         | +0.20/+1.10 |
| 10×500          | 6.94                 | 7.66                 | 7.22                 |                      |                         |             |
| 10×620          | 8.55                 | 9.45                 | 8.90                 | 8.83                 |                         |             |
| 12 × 300        | 5.14                 | 5.68                 | 5.35                 | 5.31                 |                         | +0.30/+1.50 |
| 12 × 500        | 8.40                 | 9.28                 | 8.74                 | 8.67                 |                         |             |
| 12 × 620        | 10.36                | 11.45                | 10.78                | 10.69                |                         |             |
| 16 × 300        | 6.73                 | 7.44                 | 7.00                 | 6.95                 |                         |             |
| 16 × 500        | 11.01                | 12.16                | 11.45                | 11.36                |                         |             |
| 16 × 620        | 13.57                | 15.00                | 14.12                | 14.01                |                         |             |
| 20 × 300        | 8.33                 | 9.20                 | 8.66                 | 8.60                 |                         |             |
| 20 × 500        | 13.61                | 15.04                | 14.16                | 14.05                | 16.58                   |             |
| 20 × 620        | 16.79                | 18.55                | 17.46                | 17.33                |                         |             |
| 25 × 300        | 10.32                | 11.40                | 10.73                | 10.65                |                         |             |
| 25 × 500        | 16.87                | 18.64                | 17.55                | 17.41                | 20.54                   |             |
| 25 × 620        | 20.80                | 22.98                | 21.64                | 21.47                |                         |             |
| 30 × 300        | 12.55                | 13.87                | 13.06                | 12.95                |                         | +0.50/+2.50 |
| 30 × 500        | 20.52                | 22.67                | 21.35                | 21.18                | 24.99                   |             |
| 30 × 620        | 25.3                 | 28.0                 | 26.3                 | 26.1                 |                         |             |
| 36 × 300        | 14.94                | 16.51                | 15.54                | 15.42                |                         |             |
| 36 × 500        | 24.43                | 27.0                 | 25.4                 | 25.2                 | 29.7                    |             |
| 36 × 620        | 30.1                 | 33.3                 | 31.3                 | 31.1                 |                         |             |
| 40 × 300        | 16.53                | 18.27                | 17.20                | 17.07                |                         |             |
| 40 × 500        | 27.0                 | 29.9                 | 28.1                 | 27.9                 | 32.9                    |             |
| 40 × 620        | 33.3                 | 36.8                 | 34.7                 | 34.4                 |                         |             |
| 50 × 300        | 20.52                | 22.67                | 21.35                | 21.18                | •                       |             |
| 50 × 500        | 33.5                 | 37.1                 | 34.9                 | 34.6                 |                         |             |
| 50 × 620        | 41.4                 |                      | 43.0                 | 42.7                 |                         |             |
| 60 × 300        | 24.70                | 27.3                 | 25.7                 | 25.5                 |                         | +0.50/+3.50 |
| 60 × 500        | 40.4                 | 44.6                 | 42.0                 | 41.7                 |                         |             |
| 70 × 300        | 28.7                 | 31.7                 | 29.8                 | 29.6                 |                         |             |
| 80 × 300        | 33.0                 | 36.4                 | 34.3                 | 34.0                 |                         | +0.50/+5.00 |
|                 |                      |                      |                      |                      |                         |             |

Tolerances according to DIN: Length 0/+3% Width +5 / +25 mm Stock lengths: 3,000 mm



44

Modifications in colour and diameter on request. Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com



## TECATRON

Polyphenylenesulphide (PPS) is a semi-crystalline, high temperature thermoplastic polymer. Due to its chemical structure, TECATRON is a very resistant polymer with excellent mechanical strength, even at temperatures above 200 °C. In addition to low water absorption, PPS also has good dimensional stability and excellent electrical properties. PPS is chemically very stable even at high temperatures.

#### Overview of types

#### TECATRON

(PPS) Low water absorption. Very good electrical insulation.

### **TECATRON GF40**

(PPS GF) Extremely high strength due to glass fibre reinforcement. Very good chemical resistance. TECATRON PVX black (PPS CF CS TF) Very good sliding and friction values. Suitable for bearings under high levels of stress. **TECATRON CMP natural** (PPS)  $\rightarrow$  p. 79

**TECATRON SE** (*PPS*) → p. 79

#### Application examples

Fluid valve TECATRON GF40 natural (PPS GF) Good chemical resistance. Dimensionally stable. Narrow tolerances possible.



End plate of a fuel cell TECATRON GF40 black (PPS GF) Very good rigidity and strength even at high temperatures. High thermal stability. High dimensional stability. Good chemical resistance.



## **TECATRON** Rods

| 0               | TECATRON<br>natural |             |
|-----------------|---------------------|-------------|
| Polymer         | PPS                 |             |
| Density [g/cm³] | 1.36                |             |
| Colour          | beige<br>opaque     |             |
|                 |                     | Tolerance   |
| Diameter [mm]   | [kg/m]              | [mm]        |
| 10              | 0.118               | +0.10/+0.70 |
| 12              | 0.170               | +0.20/+0.80 |
| 16              | 0.297               |             |
| 20              | 0.458               |             |
| 22              | 0.556               | +0.20/+1.00 |
| 25              | 0.714               |             |
| 30              | 1.02                |             |
| 32              | 1.16                | +0.20/+1.20 |
| 36              | 1.47                |             |
| 40              | 1.80                |             |
| 45              | 2.29                | +0.30/+1.30 |
| 50              | 2.81                |             |
| 56              | 3.52                |             |
| 60              | 4.05                | +0.30/+1.60 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

## **TECATRON** Rods

| 6               | TECATRON<br>GF40 natural | TECATRON<br>GF40 black | TECATRON<br>PVX black |             |
|-----------------|--------------------------|------------------------|-----------------------|-------------|
| Polymer         | PPS                      | PPS                    | PPS                   |             |
| Density [g/cm³] | 1.63                     | 1.63                   | 1.50                  |             |
| Colour          | beige                    | black                  | black                 |             |
|                 | opaque                   | opaque                 | opaque                |             |
|                 |                          |                        |                       | Tolerance   |
| Diameter [mm]   | [kg/m]                   | [kg/m]                 | [kg/m]                | [mm]        |
| 10              | 0.143                    | 0.143                  | 0.131                 | +0.10/+0.80 |
| 12              | 0.206                    | 0.206                  | 0.189                 | +0.20/+0.90 |
| 16              | 0.358                    | 0.358                  | 0.329                 |             |
| 20              | 0.551                    | 0.551                  | 0.507                 |             |
| 22              | 0.673                    | 0.673                  | 0.619                 | +0.20/+1.20 |
| 25              | 0.862                    | 0.862                  | 0.794                 |             |
| 30              | 1.23                     | 1.23                   | 1.13                  |             |
| 32              | 1.40                     | 1.40                   | 1.28                  |             |
| 36              | 1.78                     | 1.78                   | 1.64                  | +0.20/+1.60 |
| 40              | 2.18                     | 2.18                   | 2.01                  |             |
| 45              | 2.78                     | 2.78                   |                       | +0.30/+2.00 |
| 50              | 3.42                     | 3.42                   |                       |             |
| 56              | 4.26                     | 4.26                   |                       |             |
| 60              | 4.92                     | 4.92                   |                       | +0.30/+2.50 |
|                 |                          |                        |                       |             |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm



Stock item Non-stock item – special production Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## **TECATRON** Plates

|                 | TECATRON<br>natural | TECATRON<br>GF40 natural | TECATRON<br>GF40 black | TECATRON<br>PVX black |             |
|-----------------|---------------------|--------------------------|------------------------|-----------------------|-------------|
| Polymer         | PPS                 | PPS                      | PPS                    | PPS                   |             |
| Density [g/cm³] | 1.36                | 1.63                     | 1.63                   | 1.50                  |             |
| Colour          | beige<br>opaque     | beige<br>opaque          | black<br>opaque        | black<br>opaque       |             |
|                 |                     |                          |                        |                       | Tolerance   |
| Dimensions [mm] | [kg/m]              | [kg/m]                   | [kg/m]                 | [kg/m]                | [mm]        |
| 10×500          | 7.61                | 9.12                     | 9.12                   | 8.39                  | +0.20/+1.10 |
| 12 × 500        | 9.22                | 11.05                    | 11.05                  | 10.16                 | +0.30/+1.50 |
| 16 × 500        | 12.07               | 14.47                    | 14.47                  | 13.32                 |             |
| 18×500          | 13.50               | 16.18                    | 16.18                  | 14.89                 |             |
| 20 × 500        | 14.93               | 17.90                    | 17.90                  | 16.47                 |             |
| 25 × 500        | 18.50               | 22.18                    | 22.18                  | 20.41                 |             |
| 30 × 500        | 22.50               | 27.0                     | 27.0                   | 24.82                 | +0.50/+2.50 |
| 36 × 500        | 26.8                | 32.1                     | 32.1                   | 29.5                  |             |
| 40 × 500        | 29.6                | 35.5                     | 35.5                   | 32.7                  |             |
| 50 × 300        | 22.50               | 27.0                     | 27.0                   | 24.82                 |             |
| 50 × 500        | 36.8                | 44.1                     | 44.1                   |                       |             |
| 60 × 300        | 27.1                | 32.5                     | 32.5                   |                       | +0.50/+3.50 |
| 70 × 300        | 31.5                | 37.7                     | 37.7                   |                       |             |
|                 |                     |                          |                        |                       |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm



Stock item
Non-stock item special production Modifications in colour and diameter on request. Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com



Polyaryletherketones (PAEK, e.g. PEEK, PEK, PEKEKK) are high temperature-resistant thermoplastics with unusual characteristics. The high strength of the semi-crystalline aromatic polymers is maintained even at high temperatures. In addition, PAEK materials demonstrate very good impact strength at low temperatures, high mechanical fatigue strength, a very low tendency to creep as well as good sliding and wear properties. Their chemical resistance is also very good. Due to their unusual characteristics, TECAPEEK is used for particularly demanding applications.

#### Overview of types

#### TECAPEEK

(PEEK) Long-term service temperatures of up to +260 °C. Excellent mechanical properties even at high temperatures.

**TECAPEEK blue** (PEEK)  $\rightarrow$  p. 66

**TECAPEEK bright red** (PEEK) Bright signal colour.

TECAPEEK GF30 (PEEK GF) Glass fibre-reinforced with increased strength. Excellent chemical resistance.

TECAPEEK CF30 black (PEEK CF) Very high strength values due to the addition of carbon fibre. Extremely abrasion resistant. TECAPEEK PVX black (PEEK CF CS TF) Very good sliding values. Suitable for bearings under high levels of stress.

**TECAPEEK ELS nano black** (PEEK, CNT)  $\rightarrow$  p. 79

**TECAPEEK TF10 blue** (*PEEK TF*) → p. 66

**TECAPEEK ID blue** (PEEK, detectable filler)  $\rightarrow$  p. 66

**TECAPEEK PNT** (PEEK GF CNT)  $\rightarrow$  p. 54

TECAPEEK MT coloured TECAPEEK MT XRO coloured TECAPEEK MT CF30 black (PEEK / PEEK CF)  $\rightarrow$  p. 70 TECAPEEK MT CLASSIX white TECAPEEK MT CLASSIX XRO20 (PEEK) → p. 70

**TECAPEEK CMP natural** TECAPEEK SE (*PEEK*) → p. 79

**TECAPEEK TS** (PEEK, mineral)  $\rightarrow$  p. 79

**TECAPEEK CMF** white / grey (PEEK, ceramic)  $\rightarrow$  p. 79

TECAPEEK HT black (PEK) Good abrasion and wear resistance. High loading capacity under static and dynamic stress.

TECAPEEK ST black (PEKEKK) Excellent mechanical properties at high temperatures.

#### Application examples

Support comb TECAPEEK GF30 natural (PEEK GF) High degree of toughness. High dimensional stability. Good chemical resistance. Electrically insulating.



Valve cover TECAPEEK natural (PEEK) Good thermal formability. Good resistance to oil and grease even at high temperatures.



Gear rack TECAPEEK PVX black (PEEK CF CS TF) Good tribological properties. Good dimensional stability. High strength and rigidity.



| Polymer         PEEK         PEEK         PEK         PEK         PEKEKK           Density [g/cm³]         1.31         1.31         1.31         1.32           Colour         beige<br>opaque         black<br>opaque         black<br>opaque         black<br>opaque         black<br>opaque         black<br>opaque           Diameter [mm]         [kg/m]         [kg/m]         [kg/m]         [kg/m]         mm           3         0.012         0.012         0.012         0.020         0.020           4         0.020         0.020         0.030         0.030         0.030           5         0.030         0.030         0.030         0.030         0.030           6         0.042         0.042         0.042         0.043         0.010           10         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.114         0.125         0.252                                                                                                                                                                                                                                                                                                                                                                                                             |      |          | TECAPEEK<br>ST black | TECAPEEK<br>HT black | TECAPEEK<br>black | TECAPEEK<br>natural | 6               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------------------|----------------------|-------------------|---------------------|-----------------|
| Density [g/cm³]         1.31         1.31         1.31         1.32           Colour         beige<br>opaque         black<br>opaque         blach         black<br>opaque         blach< |      |          | PEKEKK               | PEK                  | PEEK              | PEEK                | Polymer         |
| Colour         beige<br>opaque         black<br>opaque         black<br>opaque         black<br>opaque         black<br>opaque         black<br>opaque           Diameter [mm]         [kg/m]         [kg/m]         [kg/m]         [kg/m]         [kg/m]         mm           3         0.012         0.012         0.012         0.012         +0.10/+0.0           4         0.020         0.020         0.020         0.020         +0.10/+0.0           5         0.030         0.030         0.030         0.030         0.030           6         0.042         0.042         0.042         0.043         +0.10/+0.0           6         0.042         0.042         0.042         0.043         +0.10/+0.0           10         0.114         0.114         0.114         0.114         0.114           110         0.114         0.114         0.114         0.114         0.114           1112         0.164         0.164         0.164         0.164         0.164           111         0.114         0.114         0.114         0.114         0.114           112         0.163         0.252         0.252         0.253         0.263         0.264           116         0.286<                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |          | 1.32                 | 1.31                 | 1.31              | 1.31                | Density [g/cm³] |
| opaque         opaque         opaque         opaque         opaque           Diameter [mm]         [kg/m]         [kg/m]         [kg/m]         [kg/m]         [mr           3         0.012         0.012         0.012         0.012         +0.10/+0.4           4         0.020         0.020         0.020         0.020         -0.020           5         0.030         0.030         0.030         0.030         -0.030           6         0.042         0.042         0.042         0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |          | black                | black                | black             | beige               | Colour          |
| Diameter [mm]         [kg/m]         [kg/m]         [kg/m]         [kg/m]         [kg/m]         [mr           3         0.012         0.012         0.012         0.012         +0.10/+0.0           4         0.020         0.020         0.020         0.020           5         0.030         0.030         0.030         0.030           6         0.042         0.042         0.043         0.043           8         0.074         0.074         0.075         +0.10/+0.7           10         0.114         0.114         0.114         0.114           110         0.114         0.114         0.114         0.114           112         0.164         0.164         0.165         +0.20/+0.8           115         0.252         0.252         0.252         0.254           116         0.286         0.286         0.286         0.288           120         0.441         0.441         0.444         0.444           220         0.536         0.536         0.536         0.540           230         0.983         0.983         0.983         0.990           32         1.12         1.12         1.13         +0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |          | opaque               | opaque               | opaque            | opaque              |                 |
| Diameter [mm]         [kg/m]         [kg/m]         [kg/m]         [kg/m]         [kg/m]         [mr           3         0.012         0.012         0.012         0.012         0.012         +0.10/+0.6           4         0.020         0.020         0.020         0.020         0.020           5         0.030         0.030         0.030         0.030         0.030           6         0.042         0.042         0.042         0.043         0.043           8         0.074         0.074         0.075         +0.10/+0.7           10         0.114         0.114         0.114         0.114           110         0.114         0.114         0.114         0.114         0.114           112         0.164         0.164         0.164         0.165         +0.20/+0.8           115         0.252         0.252         0.252         0.254         +0.20/+1.6           116         0.286         0.286         0.286         0.288         0.858           120         0.441         0.441         0.441         0.441           122         0.536         0.536         0.540         +0.20/+1.0           123         0.858<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nce  | Tolera   | FL ( 1               | D ( 1                | Ги <i>и</i> 1     | FL ( 1              |                 |
| 3         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.012         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.031         0.00//////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                          |      | [n       | [kg/m]               | [kg/m]               | [kg/m]            | [kg/m]              | Diameter [mm]   |
| 4         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.043         0.00/14         0.01/10.01         0.01/10.01         0.01/10.01         0.01/14         0.10/10.01         0.01/14.01         0.01/14         0.01/14         0.01/14.01         0.01/14         0.01/14.01         0.01/14         0.01/14.01         0.01/14.01         0.01/14.01         0.01/14.01         0.01/14.01         0.01/14.01         0.01/14.01         0.01/14.01         0.02/14.01         0.02/14.01 <t< th=""><th>J.6U</th><th>+U.1U/+l</th><th>0.012</th><th>0.012</th><th>0.012</th><th>0.012</th><th>3</th></t<>                                                                                                                                                                                                              | J.6U | +U.1U/+l | 0.012                | 0.012                | 0.012             | 0.012               | 3               |
| 5         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.050         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.043         0.074         0.075         +0.10/+0.1         0.074         0.075         +0.10/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.07/+0.1         0.02/+1.0         0.01/+0.1         0.02/+1.0 <th></th> <th></th> <th>0.020</th> <th>0.020</th> <th>0.020</th> <th>0.020</th> <th></th>                                                                                                                                                                                                                       |      |          | 0.020                | 0.020                | 0.020             | 0.020               |                 |
| 6         0.042         0.042         0.042         0.042         0.043           8         0.074         0.074         0.074         0.075         +0.10/+0.1           10         0.114         0.114         0.114         0.114         0.114           12         0.164         0.164         0.164         0.165         +0.20/+0.8           15         0.252         0.252         0.252         0.254            16         0.286         0.286         0.286         0.288           18         0.359         0.359         0.362            20         0.441         0.441         0.441         0.444           22         0.536         0.536         0.540         +0.20/+1.0           25         0.688         0.688         0.693            28         0.858         0.858         0.865            30         0.983         0.983         0.983         0.990           32         1.12         1.12         1.13         +0.20/+1.2           36         1.41         1.41         1.41         1.42           40         1.74         1.74         1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          | 0.050                | 0.050                | 0.030             | 0.050               |                 |
| 10         0.10/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0.0/4         0                                                                                                                                                                                                                                                                                                                                                           | 1 70 | +0.10/+0 | 0.043                | 0.042                | 0.042             | 0.042               | 0               |
| 10         0.114         0.114         0.114         0.114           12         0.164         0.164         0.164         0.165         +0.20/+0.8           15         0.252         0.252         0.252         0.254         +0.20/+0.8           16         0.286         0.286         0.286         0.288         0.888           18         0.359         0.359         0.359         0.362           20         0.441         0.441         0.444         0.444           22         0.536         0.536         0.536         0.540           25         0.688         0.688         0.688         0.693           30         0.983         0.983         0.983         0.990           32         1.12         1.12         1.13         +0.20/+1.2           36         1.41         1.41         1.42         +0.20/+1.2           40         1.74         1.74         1.75         +0.30/+1.3           45         2.20         2.20         2.20         2.22         +0.30/+1.3           50         2.71         2.71         2.73         2.73         -0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.70 | +0.10/+0 | 0.075                | 0.074                | 0.074             | 0.074               | 10              |
| 11         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.121         0.                                                                                                                                                                                                                                                                                                                                                           | 1.80 | +0.20/+0 | 0.165                | 0.164                | 0.164             | 0.114               | 12              |
| 16         0.286         0.286         0.286         0.286           16         0.286         0.286         0.286         0.288           18         0.359         0.359         0.359         0.362           20         0.441         0.441         0.441         0.444           22         0.536         0.536         0.536         0.540         +0.20/+1.0           25         0.688         0.688         0.683         0.693         0.2090         -           28         0.858         0.858         0.858         0.865         0.20/+1.2         -           30         0.983         0.983         0.993         0.990         -         -           32         1.12         1.12         1.12         1.13         +0.20/+1.2         -           36         1.41         1.41         1.41         1.42         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | 0.254                | 0.252                | 0.252             | 0.252               |                 |
| 18         0.359         0.359         0.359         0.362           20         0.441         0.441         0.441         0.444           22         0.536         0.536         0.536         0.540         +0.20/+1.0           25         0.688         0.688         0.688         0.693         -0.20/+1.0           30         0.983         0.983         0.983         0.990         -0.20/+1.2           36         1.41         1.41         1.41         1.42           40         1.74         1.74         1.75           45         2.20         2.20         2.20         2.22         +0.30/+1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          | 0.288                | 0.286                | 0.286             | 0.286               | 16              |
| 20         0.441         0.441         0.441         0.444           22         0.536         0.536         0.536         0.540         +0.20/+1.0           25         0.688         0.688         0.688         0.693         .0683         0.693           28         0.858         0.858         0.858         0.858         0.900         .020/+1.0           30         0.983         0.983         0.983         0.990         .020/+1.2         .112         1.13         +0.20/+1.2           36         1.41         1.41         1.41         1.42         .020/+1.2         .020/+1.2         .020/+1.2         .020/+1.2           40         1.74         1.74         1.74         1.75         .030/+1.2         .030/+1.2           45         2.20         2.20         2.22         +0.30/+1.2         .030/+1.2         .030/+1.2           50         2.71         2.71         2.73         2.73         .030/+1.2         .030/+1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | 0.362                | 0.359                | 0.359             | 0.359               | 18              |
| 22         0.536         0.536         0.536         0.540         +0.20/+1.0           25         0.688         0.688         0.688         0.693         0.858         0.858         0.865           30         0.983         0.983         0.983         0.993         0.990         +0.20/+1.0           32         1.12         1.12         1.13         +0.20/+1.2         +0.20/+1.2           36         1.41         1.41         1.41         1.42         +0.20/+1.2           40         1.74         1.74         1.74         1.75           45         2.20         2.20         2.20         2.22         +0.30/+1.3           50         2.71         2.71         2.71         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |          | 0.444                | 0.441                | 0.441             | 0.441               | 20              |
| 25         0.688         0.688         0.688         0.693           28         0.858         0.858         0.858         0.858         0.865           30         0.983         0.983         0.983         0.990         0.990           32         1.12         1.12         1.12         1.13         +0.20/+1.2           40         1.74         1.74         1.74         1.75           45         2.20         2.20         2.20         2.22         +0.30/+1.3           50         2.71         2.71         2.71         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .00  | +0.20/+1 | 0.540                | 0.536                | 0.536             | 0.536               | 22              |
| 28         0.858         0.858         0.858         0.865           30         0.983         0.983         0.983         0.990           32         1.12         1.12         1.12         1.13         +0.20/+1.2           36         1.41         1.41         1.42         +0.20/+1.2           40         1.74         1.74         1.75           45         2.20         2.20         2.20         2.22         +0.30/+1.3           50         2.71         2.71         2.71         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |          | 0.693                | 0.688                | 0.688             | 0.688               | 25              |
| 30         0.983         0.983         0.990           32         1.12         1.12         1.13         +0.20/+1.2           36         1.41         1.41         1.42         +0.20/+1.2           40         1.74         1.74         1.75           45         2.20         2.20         2.22         +0.30/+1.2           50         2.71         2.71         2.73         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |          | 0.865                | 0.858                | 0.858             | 0.858               | 28              |
| 32         1.12         1.12         1.13         +0.20/+1.2           36         1.41         1.41         1.41         1.42           40         1.74         1.74         1.74         1.75           45         2.20         2.20         2.22         +0.30/+1.2           50         2.71         2.71         2.73         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |          | 0.990                | 0.983                | 0.983             | 0.983               | 30              |
| 36         1.41         1.41         1.42           40         1.74         1.74         1.74         1.75           45         2.20         2.20         2.22         +0.30/+1.33           50         2.71         2.71         2.71         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20   | +0.20/+1 | 1.13                 | 1.12                 | 1.12              | 1.12                | 32              |
| 40         1.74         1.74         1.75           45         2.20         2.20         2.20         2.22         +0.30/+1.5           50         2.71         2.71         2.71         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |          | 1.42                 | 1.41                 | 1.41              | 1.41                | 36              |
| 45         2.20         2.20         2.22         +0.30/+1.5           50         2.71         2.71         2.71         2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |          | 1.75                 | 1.74                 | 1.74              | 1.74                | 40              |
| <b>50</b> 2.71 2.71 2.71 2.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30   | +0.30/+1 | 2.22                 | 2.20                 | 2.20              | 2.20                | 45              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |          | 2.73                 | 2.71                 | 2.71              | 2.71                | 50              |
| <b>56</b> 3.39 3.39 3.39 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |          | 3.41                 | 3.39                 | 3.39              | 3.39                | 56              |
| <b>60 3.90 3.90 3.90 3.93</b> +0.30/+1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60   | +0.30/+1 | 3.93                 | 3.90                 | 3.90              | 3.90                | 60              |
| <b>65</b> 4.56 4.56 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |          | 4.60                 | 4.56                 | 4.56              | 4.56                | 65              |
| <b>70 5.28 5.28 5.28 5.32</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |          | 5.32                 | 5.28                 | 5.28              | 5.28                | 70              |
| <b>80</b> 6.92 6.92 6.92 6.97 +0.40/+2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00 | +0.40/+2 | 6.97                 | 6.92                 | 6.92              | 6.92                | 80              |
| <b>90</b> 8.76 8.76 8.76 8.82 +0.50/+2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.20 | +0.50/+2 | 8.82                 | 8./6                 | 8./6              | 8.76                | 90              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.50 | +0.60/+2 | 10.90                | 10.82                | 12.82             | 10.82               | 110             |
| <b>110 15.15 15.15 +0.70/+5.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | +0./0/+: |                      |                      | 15.15             | 15.15               | 120             |
| 120 13.00 13.00 +0.00/+3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.50 | +0.00/+2 |                      |                      | 16.00             | 15.00               | 120             |
| <b>135</b> 19.80 19.80 ±0.90/±3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 80 | +0 90/+3 |                      |                      | 19.80             | 19.80               | 125             |
| 140 21 27 21 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 10.50/12 |                      |                      | 21 27             | 21.27               | 140             |
| <b>150 24.44 24.44 +1.00/+4.7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20 | +1.00/+4 |                      |                      | 24.44             | 24.44               | 150             |
| <b>160</b> 27.8 +1.10/+4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.50 | +1.10/+4 |                      |                      |                   | 27.8                | 160             |
| <b>165 29.7</b> +1.20/+5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00 | +1.20/+5 |                      |                      |                   | 29.7                | 165             |
| <b>180°</b> 35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          |                      |                      |                   | 35.2                | 180*            |
| 200* 43.4 +1.30/+5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.50 | +1.30/+5 |                      |                      |                   | 43.4                | 200*            |
| <b>210'</b> 47.9 +1.30/+5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.80 | +1.30/+5 |                      |                      |                   | 47.9                | 210*            |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

\* Stock length: 1,000 mm



Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## **TECAPEEK** Rods

| 6               | TECAPEEK<br>GF30 natural | TECAPEEK<br>CF30 black | TECAPEEK<br>PVX black |             |
|-----------------|--------------------------|------------------------|-----------------------|-------------|
| Polymer         | PEEK                     | PEEK                   | PEEK                  |             |
| Density [g/cm³] | 1.53                     | 1.38                   | 1.44                  |             |
| Colour          | beige<br>opaque          | black<br>opaque        | black<br>opaque       |             |
|                 |                          |                        |                       | Tolerance   |
| Diameter [mm]   | [kg/m]                   | [kg/m]                 | [kg/m]                | [mm]        |
| 5               | 0.036                    | 0.032                  | 0.034                 | +0.10/+0.70 |
| 6               | 0.050                    | 0.045                  | 0.047                 |             |
| 8               | 0.088                    | 0.079                  | 0.082                 | +0.10/+0.80 |
| 10              | 0.134                    | 0.121                  | 0.126                 |             |
| 12              | 0.193                    | 0.174                  | 0.182                 | +0.20/+0.90 |
| 15              | 0.296                    | 0.267                  | 0.279                 |             |
| 16              | 0.336                    | 0.303                  | 0.316                 |             |
| 18              | 0.422                    | 0.380                  | 0.397                 |             |
| 20              | 0.518                    | 0.467                  | 0.487                 |             |
| 22              | 0.632                    | 0.570                  | 0.594                 | +0.20/+1.20 |
| 25              | 0.810                    | 0.730                  | 0.762                 |             |
| 28              | 1.01                     | 0.911                  | 0.950                 |             |
| 30              | 1.16                     | 1.04                   | 1.09                  |             |
| 32              | 1.31                     | 1.18                   | 1.23                  |             |
| 36              | 1.67                     | 1.51                   | 1.57                  | +0.20/+1.60 |
| 40              | 2.05                     | 1.85                   | 1.93                  |             |
| 45              | 2.61                     | 2.35                   | 2.46                  | +0.30/+2.00 |
| 50              | 3.21                     | 2.89                   | 3.02                  |             |
| 56              | 4.00                     | 3.61                   | 3.77                  |             |
| 60              | 4.62                     | 4.17                   | 4.35                  | +0.30/+2.50 |
| 65              | 5.40                     | 4.87                   | 5.09                  |             |
| 70              | 6.25                     | 5.64                   | 5.88                  |             |
| 80              | 8.18                     | 7.38                   | 7.70                  | +0.40/+3.00 |
| 90              | 10.36                    | 9.35                   | 9.75*                 | +0.50/+3.40 |
| 100             | 12.80                    |                        | 12.05*                | +0.60/+3.80 |

\* Stock length: 1,000 mm

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm



Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## **TECAPEEK** Plates

|                              | TECAPEEK<br>natural | TECAPEEK<br>black | TECAPEEK<br>GF30<br>natural | TECAPEEK<br>CF30 black | TECAPEEK<br>PVX black | TECAPEEK<br>ST black | TECAPEEK<br>HT black |        |             |
|------------------------------|---------------------|-------------------|-----------------------------|------------------------|-----------------------|----------------------|----------------------|--------|-------------|
| Polymer                      | PEEK                | PEEK              | PEEK                        | PEEK                   | PEEK                  | PEKEKK               | PEK                  |        |             |
| Density [q/cm <sup>3</sup> ] | 1.31                | 1.31              | 1.53                        | 1.38                   | 1.44                  | 1.32                 | 1.31                 |        |             |
| Colour                       | beige               | black             | beige                       | black                  | black                 | black                | black                | Stock  |             |
|                              | opaque              | opaque            | opaque                      | opaque                 | opaque                | opaque               | opaque               | length |             |
|                              |                     |                   |                             |                        |                       |                      |                      |        | Tolerance   |
| Dimensions [mm]              | [kg/m]              | [kg/m]            | [kg/m]                      | [kg/m]                 | [kg/m]                | [kg/m]               | [kg/m]               | [mm]   | [mm]        |
| 5 × 500                      | 3.75                | 3.75              | 4.38                        |                        |                       | 3.78                 | 3.75                 | 3.000  | +0.20/+0.70 |
| 5 × 620                      | 4.62                | 4.62              | 5.40                        | 4.87                   | 5.08                  | 4.66                 | 4.62                 | 3.000  |             |
| 6 × 500                      | 4.44                | 4.44              | 5.18                        |                        |                       | 4.47                 | 4.44                 | 3.000  |             |
| 6 × 620                      | 5.47                | 5.47              | 6.39                        | 5.77                   | 6.02                  | 5.51                 | 5.47                 | 3.000  |             |
| 8 × 500                      | 5.95                | 5.95              | 6.95                        | 6.27                   | 6.54                  | 6.00                 | 5.95                 | 3.000  | +0.20/+1.10 |
| 8 × 620                      | 7.34                | 7.34              | 8.57                        | 7.73                   | 8.07                  | 7.40                 | 7.34                 | 3.000  |             |
| 10 × 500                     | 7.33                | 7.33              | 8.56                        | 7.72                   | 8.06                  | 7.38                 | 7.33                 | 3.000  |             |
| 10 × 620                     | 9.04                | 9.04              | 10.55                       | 9.52                   | 9.93                  | 9.11                 | 9.04                 | 3.000  |             |
| 12 × 500                     | 8.88                | 8.88              | 10.37                       | 9.35                   | 9.76                  | 8.94                 | 8.88                 | 3.000  | +0.30/+1.50 |
| 12 × 620                     | 10.95               | 10.95             | 12.78                       | 11.53                  | 12.03                 | 11.03                | 10.95                | 3.000  |             |
| 16 × 500                     | 11.63               | 11.63             | 13.58                       | 12.25                  | 12.78                 | 11.72                | 11.63                | 3.000  |             |
| 16 × 620                     | 14.34               | 14.34             | 16.75                       | 15.11                  | 15.76                 | 14.45                | 14.34                | 3.000  |             |
| 18 × 500                     | 13.01               | 13.01             | 15.19                       | 13.70                  | 14.30                 | 13.11                | 13.01                | 3.000  |             |
| 18 × 620                     | 16.04               | 16.04             | 18.73                       | 16.89                  | 17.63                 | 16.16                | 16.04                | 3.000  |             |
| 20 × 500                     | 14.38               | 14.38             | 16.80                       | 15.15                  | 15.81                 | 14.49                | 14.38                | 3.000  |             |
| 20 × 620                     | 17.73               | 17.73             | 20.71                       | 18.68                  | 19.49                 | 17.87                | 17.73                | 3.000  |             |
| 20 × 1,000 <sup>*</sup>      | 28.3                |                   |                             |                        |                       |                      |                      | 2.000  |             |
| 22 × 500                     | 15.76               | 15.76             | 18.40                       | 16.60                  | 17.32                 | 15.88                | 15.76                | 3.000  |             |
| 25 × 500                     | 17.82               | 17.82             | 20.82                       | 18.78                  | 19.59                 | 17.96                | 17.82                | 3.000  |             |
| 25 × 620                     | 21.98               | 21.98             | 25.7                        | 23.15                  | 24.16                 | 22.14                | 21.98                | 3.000  |             |
| 25 × 1,000 <sup>*</sup>      | 35.1                |                   |                             |                        |                       |                      |                      | 2.000  |             |
| 30 × 500                     | 21.68               | 21.68             | 25.3                        | 22.83                  | 23.83                 | 21.84                | 21.68                | 3.000  | +0.50/+2.50 |
| 30 × 620                     | 26.7                | 26.7              | 31.2                        | 28.2                   | 29.4                  | 26.9                 | 26.7                 | 3.000  |             |
| 30 × 1,000*                  | 42.7                |                   |                             |                        |                       |                      |                      | 2.000  |             |
| 32 × 500                     | 23.05               | 23.05             | 26.9                        | 24.28                  | 25.3                  | 23.23                | 23.05                | 3.000  |             |
| 36 × 500                     | 25.8                | 25.8              | 30.1                        | 27.2                   | 28.4                  | 26.0                 | 25.8                 | 3.000  |             |
| 40 × 500                     | 28.6                | 28.6              | 33.4                        | 30.1                   | 31.4                  | 28.8                 | 28.6                 | 3.000  |             |
| 40 × 620                     | 35.2                | 35.2              | 41.1                        | 37.1                   | 38.7                  | 35.5                 | 35.2                 | 3.000  |             |
| 40 × 1,000 <sup>*</sup>      | 56.3                |                   |                             |                        |                       |                      |                      | 2.000  |             |
| 45 × 500                     | 32.0                | 32.0              | 37.4                        | 33.7                   | 35.2                  | 32.2                 | 32.0                 | 3.000  |             |
| 45 × 620                     | 39.5                | 39.5              | 46.1                        | 41.6                   | 43.4                  | 39.8                 | 39.5                 | 3.000  |             |
| 50 × 500                     | 35.4                | 35.4              | 41.4                        | 37.3                   | 39.0                  | 35.7                 | 35.4                 | 3.000  |             |
| 50 × 620                     | 43.7                | 43.7              | 51.0                        | 46.0                   | 48.0                  | 44.0                 | 43.7                 | 3.000  |             |
| 50 × 1,000 <sup>*</sup>      | 69.8                |                   |                             |                        |                       |                      |                      | 2.000  |             |
| 60 × 300                     | 26.1                | 26.1              | 30.5                        |                        |                       |                      |                      | 3.000  | +0.50/+3.50 |
| 60 × 500                     | 42.7                | 42.7              | 49.8                        |                        |                       |                      |                      | 3.000  |             |
| 60 × 1,000*                  | 84.1                |                   |                             |                        |                       |                      |                      | 2.000  |             |
| 70 × 300                     | 30.3                | 30.3              | 35.4                        |                        |                       |                      |                      | 3.000  |             |
| 80 × 300                     | 34.8                |                   | 40.7                        |                        |                       |                      |                      | 3.000  | +0.50/+5.00 |
| 80 × 500                     | 56.9                |                   |                             |                        |                       |                      |                      | 3.000  |             |
| 100 × 300                    | 43.2                |                   |                             |                        |                       |                      |                      | 3.000  |             |
| 120 × 620°                   | 104.6               |                   |                             |                        |                       |                      |                      | 1.000  | +0.50/+6.00 |
| 150 × 620°                   | 130.5               |                   |                             |                        |                       |                      |                      | 1.000  | +0.50/+7.00 |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000

\* Stock length: 2,000 mm

<sup>a</sup> Stock length: 1,000 mm



Stock item special production

Modifications in colour and diameter on request. Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

### **TECAPEEK** Tubes

| 0                       |               | <b>TECAP</b><br>Polyme<br>Density<br>Colour: | er: PEE<br>y: 1.31<br>beige | i <b>tural</b><br>EK<br>.g/cm<br>opaqu | 3<br>Ie      |       |       |       |              |      |              |      |      |      |              |      |      |       |              |
|-------------------------|---------------|----------------------------------------------|-----------------------------|----------------------------------------|--------------|-------|-------|-------|--------------|------|--------------|------|------|------|--------------|------|------|-------|--------------|
| Diameter<br>Outer [mm]  | $\rightarrow$ | 16                                           | 20                          | 25                                     | 30           | 36    | 40    | 45    | 50           | 56   | 60           | 65   | 70   | 75   | 80           | 85   | 90   | 100   | 110          |
| Diameter<br>Inner [mm]  | $\downarrow$  | [kg/m]                                       |                             |                                        |              |       |       |       |              |      |              |      |      |      |              |      |      |       |              |
|                         | 8             | 0.239                                        |                             |                                        |              |       |       |       |              |      |              |      |      |      |              |      |      |       |              |
|                         | 10            |                                              | 0.362                       |                                        |              |       |       |       |              |      |              |      |      |      |              |      |      |       |              |
|                         | 15            |                                              | 0.239                       | 0.483                                  | 0.779        |       |       |       |              |      |              |      |      |      |              |      |      |       |              |
|                         | 18            |                                              |                             | 0.384                                  | 0.680        |       |       |       |              |      |              |      |      |      |              |      |      |       |              |
|                         | 20            |                                              |                             |                                        | 0.603        | 1.09  | 1.42  |       |              |      |              |      |      |      |              |      |      |       |              |
|                         | 25            |                                              |                             |                                        | 0.375        | 0.871 | 1.20  | 1.66  | 2.17         | 2.92 | 3.42         | 4.14 | 4.87 | 5.65 | 6.48         | 7.52 | 8.47 | 10.51 |              |
|                         | 30            |                                              |                             |                                        |              |       | 0.926 |       | 1.90         | 2.64 | 3.15         | 3.87 | 4.60 | 5.38 | 6.21         | 7.27 | 8.21 | 10.26 |              |
|                         | 35            |                                              |                             |                                        |              | -     | 0.598 | 1.06  |              | 2.32 |              |      |      |      |              |      |      |       |              |
|                         | 36            |                                              |                             |                                        |              |       |       |       | 1.50         | -    |              |      |      |      |              |      |      |       |              |
|                         | 40            |                                              |                             |                                        |              |       |       | 0.678 | 1.19         | 1.94 | 2.45         | 3.17 | 3.90 | 4.68 | 5.52         | 6.60 | 7.55 | 9.59  |              |
|                         | 45            |                                              |                             |                                        |              |       |       |       | 0.758        | 1.52 | 2.02         | 2.75 | 3.48 | 4.26 | 5.09         | 6.19 | 7.14 | 9.18  |              |
|                         | 50            |                                              |                             |                                        |              |       |       |       |              |      | 1.54         |      | 3.00 | 3.78 | 4.61         | 5.73 | 6.67 | 8.72  | 10.97        |
|                         | 56            |                                              |                             |                                        |              |       |       |       |              |      |              |      |      |      | 3.97         | 5.10 | 6.05 | 8.09  |              |
|                         | 60            |                                              |                             |                                        |              |       |       |       |              |      |              |      | 1.88 |      | 3.50         | 4.64 | 5.59 | 7.63  | 9.88         |
|                         | 65            |                                              |                             |                                        |              |       |       |       |              |      |              |      |      |      |              | 4.02 | 4.96 | 7.01  | 9.26         |
|                         | 70            |                                              |                             |                                        |              |       |       |       |              |      |              |      |      |      | 2.17         |      | 4.29 | 6.34  | 8.59         |
|                         | 80            |                                              |                             |                                        |              |       |       |       |              |      |              |      |      |      |              |      | 2.79 | 4.83  | 7.08         |
|                         | 90            |                                              |                             |                                        |              |       |       |       |              |      |              |      |      |      |              |      |      |       | 5.37         |
| Tolerance<br>Outer [mm] |               |                                              |                             |                                        | +0.4<br>+1.1 |       |       |       | +0.6<br>+2.0 |      | +0.8<br>+2.5 |      |      |      | +0.8<br>+3.0 |      |      |       | +1.2<br>+3.6 |
| Tolerance<br>Inner [mm] |               |                                              |                             |                                        | -1.1<br>-0.4 |       |       |       | -2.0<br>-0.6 |      | -2.5<br>-0.8 |      |      |      | -3.0<br>-0.8 |      |      |       | -5.0<br>-1.6 |

| Diameter<br>Outer [mm]  | $\rightarrow$ | 125   | 135   | 140   | 150          | 165   | 180          | 185   | 190   | 200   | 210          | 230   | 250           | 255   | 280  | 285  | 290  | 300           | 305  | 360           |
|-------------------------|---------------|-------|-------|-------|--------------|-------|--------------|-------|-------|-------|--------------|-------|---------------|-------|------|------|------|---------------|------|---------------|
|                         | 50            | 15.00 | 17.79 | 19.26 | 22.37        |       |              |       |       |       |              |       |               |       | _    |      |      |               |      |               |
|                         | 60            | 13.93 | 16.72 | 18.20 | 21.30        |       |              |       |       |       |              |       |               |       |      |      |      |               |      |               |
|                         | 65            | 13.32 | 16.11 | 17.59 | 20.69        |       |              |       |       |       |              |       |               |       |      |      |      |               |      |               |
|                         | 70            | 12.66 | 15.45 | 16.92 | 20.03        |       |              |       |       |       |              |       |               |       |      |      |      |               |      |               |
|                         | 80            | 11.17 | 13.96 | 15.44 | 18.54        | 23.90 | 29.4         | 31.7  | 33.7  | 37.8  |              |       |               |       |      |      |      |               |      |               |
|                         | 90            | 9.48  | 12.27 | 13.74 | 16.85        | 22.22 | 27.8         | 30.0  | 32.0  | 36.2  |              | 51.3  | 61.6          | 64.8  |      |      |      |               |      |               |
|                         | 100           | 7.57  | 10.36 | 11.84 | 14.95        | 20.33 | 25.9         | 28.1  | 30.1  | 34.3  | 38.7         | 49.5  | 59.8          | 62.9  |      |      |      |               |      |               |
|                         | 110           |       | 8.25  | 9.72  | 12.83        | 18.23 | 23.77        | 26.0  | 28.0  | 32.2  | 36.6         | 47.4  | 57.8          | 60.9  |      | 78.3 |      |               |      |               |
|                         | 125           |       |       |       | 9.26         | 14.68 | 20.23        | 22.50 | 24.51 | 28.7  | 33.1         | 44.0  | 54.3          | 57.5  |      | 74.9 |      | 84.3          | 88.0 |               |
|                         | 130           |       |       |       | 7.97         | 13.39 | 18.94        | 21.22 | 23.23 | 27.4  | 31.8         |       |               |       |      |      |      |               |      |               |
|                         | 140           |       |       | -     |              | 10.66 | 16.21        | 18.50 | 20.51 | 24.69 | 29.1         |       |               |       |      |      |      |               |      |               |
|                         | 150           |       |       | -     |              |       | 13.27        | 15.57 | 17.58 | 21.76 | 26.1         | 37.1  | 47.5          | 50.7  |      | 68.1 |      | 77.5          | 81.2 |               |
|                         | 160           |       |       |       |              |       | 10.11        | 12.44 | 14.45 | 18.62 | 23.01        |       |               |       |      |      |      |               |      |               |
|                         | 175           |       |       |       |              |       |              |       |       | 13.52 | 17.91        |       |               |       |      |      |      |               |      |               |
|                         | 180           |       |       |       |              |       |              |       |       |       |              | 27.2  | 37.5          | 40.8  |      | 58.2 |      | 67.6          | 71.4 |               |
|                         | 190           |       |       | -     |              |       |              |       |       |       |              | 23.50 | 33.8          |       |      | 54.5 |      | 63.9          | 67.7 |               |
|                         | 195           |       |       |       |              |       |              |       |       |       |              | 21.56 | 31.9          |       |      | 52.6 |      | 62.0          | 65.8 |               |
|                         | 200           |       |       |       |              |       |              |       |       |       |              | 19.56 |               |       | 47.6 | 50.6 |      | 60.0          | 63.8 |               |
|                         | 210           |       |       |       |              |       |              |       |       |       |              |       | 25.7          | 29.0  |      | 46.5 |      | 55.9          | 59.7 |               |
|                         | 220           |       |       |       |              |       |              |       |       |       |              |       | 21.39         | 24.71 |      | 42.1 |      | 51.5          | 55.3 |               |
|                         | 260           |       |       |       |              |       |              |       |       |       |              |       |               |       |      |      | 25.7 |               |      |               |
|                         | 290           |       |       |       |              |       |              |       |       |       |              |       |               |       |      |      |      |               |      | 58.3          |
| Tolerance<br>Outer [mm] |               |       |       |       | +1.5<br>+4.5 |       | +1.8<br>+5.4 |       |       |       | +2.0<br>+6.0 |       | +3.0<br>+9.0  |       |      |      |      | +3.0<br>+10.0 |      | +3.0<br>+11.0 |
| Tolerance<br>Inner [mm] |               |       |       |       | -6.5<br>-2.0 |       | -7.5<br>-2.2 |       |       |       | -8.5<br>-2.5 |       | -12.0<br>-3.0 |       |      |      |      | -13.0<br>-3.5 |      | -14.0<br>-3.5 |

Tolerances according to DIN: Length 0 / +3 % Stock lengths: 3,000 mm The complete range of dimensions can be looked up in our online stock program at www.ensinger-online.com

Stock lengths: 3,000 mm

Non-stock item – special production **Modifications in colour and diameter on request.** Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

52

## **TECAPEEK** Tubes

| 0 |  |
|---|--|

TECAPEEK PVX black Polymer: PEEK Density: 1.44 g/cm<sup>3</sup> Colour: black opaque

| Diameter<br>Outer [mm]  | $\rightarrow$ | 40     | 45   | 50           | 56   | 60           | 65   | 70   | 75   | 78   | 80           | 85   | 90   | 100   | 110          |  |
|-------------------------|---------------|--------|------|--------------|------|--------------|------|------|------|------|--------------|------|------|-------|--------------|--|
| Diameter<br>Inner [mm]  | $\downarrow$  | [kg/m] |      |              |      |              |      |      |      |      |              |      |      |       |              |  |
|                         | 25            | 1.32   | 1.82 | 2.39         | 3.21 | 3.76         | 4.55 | 5.35 | 6.21 |      | 7.12         | 8.27 | 9.31 | 11.55 |              |  |
|                         | 30            |        |      | 2.09         | 2.91 | 3.46         | 4.25 | 5.05 | 5.91 |      | 6.83         | 7.99 | 9.03 | 11.27 |              |  |
|                         | 36            |        |      | 1.65         | 2.47 | 3.02         | 3.82 | 4.62 | 5.48 | 6.02 | 6.40         | 7.58 | 8.62 | 10.86 |              |  |
|                         | 40            |        |      |              | 2.14 | 2.69         | 3.49 | 4.29 | 5.15 | 5.69 | 6.06         | 7.26 | 8.30 | 10.54 |              |  |
|                         | 45            |        |      |              |      |              | 3.02 | 3.82 | 4.68 | 5.22 | 5.59         | 6.81 | 7.84 | 10.09 |              |  |
|                         | 50            |        |      |              |      |              |      | 3.29 | 4.15 | 4.70 | 5.07         | 6.30 | 7.33 | 9.58  | 12.06        |  |
|                         | 54            |        |      |              |      |              |      |      | 3.69 | 4.23 | 4.61         | 5.85 |      | 9.13  | 11.61        |  |
|                         | 56            |        |      |              |      |              |      |      |      |      | 4.36         | 5.61 | 6.65 | 8.89  |              |  |
|                         | 60            |        |      |              |      |              |      |      |      |      | 3.84         | 5.10 | 6.14 | 8.39  | 10.87        |  |
|                         | 65            |        |      |              |      |              |      |      |      |      |              | 4.42 | 5.46 | 7.70  | 10.18        |  |
|                         | 70            |        |      |              |      |              |      |      |      |      |              |      | 4.72 | 6.96  | 9.44         |  |
|                         | 75            |        |      |              |      |              |      |      |      |      |              |      |      | 6.17  | 8.64         |  |
|                         | 80            |        |      |              |      |              |      |      |      |      |              |      |      | 5.31  | 7.79         |  |
|                         | 90            |        |      |              |      |              |      |      |      |      |              |      |      |       | 5.90         |  |
| Tolerance<br>Outer [mm] |               |        |      | +0.6<br>+2.0 |      | +0.8<br>+2.5 |      |      |      |      | +0.8<br>+3.0 |      |      |       | +1.2<br>+3.6 |  |
| Tolerance<br>Inner [mm] |               |        |      | -2.0<br>-0.6 |      | -2.5<br>-0.8 |      |      |      |      | -3.0<br>-0.8 |      |      |       | -5.0<br>-1.6 |  |

| Diameter<br>Outer [mm]  | $\rightarrow$ | 125   | 135   | 140   | 150          | 165   | 180          | 185   | 190   | 200   | 210          | 230   | 250           | 255  | 285  | 300           | 305           |
|-------------------------|---------------|-------|-------|-------|--------------|-------|--------------|-------|-------|-------|--------------|-------|---------------|------|------|---------------|---------------|
|                         | 50            | 16.49 | 19.55 | 21.18 | 24.59        |       |              |       |       |       |              |       |               |      |      |               |               |
|                         | 54            | 16.05 | 19.11 | 20.73 | 24.15        |       |              |       |       |       |              |       |               |      |      |               |               |
|                         | 60            | 15.32 | 18.38 | 20.00 | 23.42        |       |              |       |       |       |              |       |               |      |      |               |               |
|                         | 65            | 14.64 | 17.71 | 19.33 | 22.75        |       |              |       |       |       |              |       |               |      |      |               |               |
|                         | 70            | 13.91 | 16.98 |       | 22.02        |       |              |       |       |       |              |       |               |      |      |               |               |
|                         | 75            | 13.13 |       |       |              |       |              |       |       |       |              |       |               |      |      |               |               |
|                         | 80            | 12.28 | 15.35 | 16.97 | 20.39        | 26.3  |              | 34.8  | 37.0  |       |              |       |               |      |      |               |               |
|                         | 90            | 10.42 | 13.49 | 15.11 | 18.52        | 24.43 |              | 33.0  | 35.2  |       |              |       |               |      |      |               |               |
|                         | 100           | 8.32  | 11.39 | 13.01 | 16.43        | 22.35 | 28.4         | 30.9  | 33.1  |       |              |       |               |      |      |               |               |
|                         | 110           |       | 9.07  | 10.69 | 14.10        | 20.04 | 26.1         | 28.6  | 30.8  | 35.4  |              |       |               |      | 86.1 |               |               |
|                         | 112           |       |       |       |              |       |              |       |       |       |              |       |               |      | 85.6 |               |               |
|                         | 125           |       |       |       | 10.18        | 16.14 | 22.23        | 24.73 | 26.9  | 31.5  |              |       |               |      | 82.3 | 92.6          | 96.7          |
|                         | 130           |       |       |       | 8.76         | 14.72 | 20.82        | 23.33 | 25.5  | 30.1  | 34.9         |       |               |      |      |               |               |
|                         | 140           |       |       |       |              | 11.72 | 17.82        | 20.34 | 22.55 | 27.1  | 32.0         |       |               |      |      |               |               |
|                         | 150           |       |       |       |              |       | 14.58        | 17.12 | 19.33 | 23.92 | 28.7         | 40.8  | 52.2          |      | 74.8 | 85.2          | 89.3          |
|                         | 160           |       |       |       |              |       |              | 13.67 | 15.88 | 20.47 | 25.3         |       |               |      |      |               |               |
|                         | 175           |       |       |       |              |       |              |       |       | 14.86 |              |       |               |      |      |               |               |
|                         | 180           |       |       |       |              |       |              |       |       |       |              | 29.9  | 41.3          |      | 64.0 | 74.3          | 78.5          |
|                         | 190           |       |       |       |              |       |              |       |       |       |              |       |               | 40.8 | 59.9 | 70.3          | 74.4          |
|                         | 195           |       |       |       |              |       |              |       |       |       |              |       |               | 38.7 | 57.8 | 68.1          | 72.3          |
|                         | 200           |       |       |       |              |       |              |       |       |       |              | 21.50 | 32.9          | 36.5 | 55.6 |               | 70.1          |
|                         | 210           |       |       |       |              |       |              |       |       |       |              |       |               | 31.9 | 51.1 | 61.4          | 65.6          |
|                         | 220           |       |       |       |              |       |              |       |       |       |              |       |               |      | 46.3 | 56.6          | 60.8          |
| Tolerance<br>Outer [mm] |               |       |       |       | +1.5<br>+4.5 |       | +1.8<br>+5.4 |       |       |       | +2.0<br>+6.0 |       | +3.0<br>+9.0  |      |      | +3.0<br>+10.0 | +3.0<br>+11.0 |
| Tolerance<br>Inner [mm] |               |       |       |       | -6.5<br>-2.0 |       | -7.5<br>-2.2 |       |       |       | -8.5<br>-2.5 |       | -12.0<br>-3.0 |      |      | -13.0<br>-3.5 | -14.0<br>-3.5 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

The complete range of dimensions can be looked up in our online stock program at www.ensinger-online.com



Stock item Non-stock item – special production Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## **TECAPEEK** Rods

| $\bigcirc$      | TECAPEEK<br>CMF white | TECAPEEK<br>CMF grey | TECAPEEK<br>TS grey | TECAPEEK<br>ELS nano<br>black | TECAPEEK<br>TF10 natural | TECAPEEK<br>PNT black | TECAPEEK<br>bright red |             |
|-----------------|-----------------------|----------------------|---------------------|-------------------------------|--------------------------|-----------------------|------------------------|-------------|
| Polymer         | PEEK                  | PEEK                 | PEEK                | PEEK                          | PEEK                     | PEEK                  | PEEK                   |             |
| Density [g/cm³] | 1.65                  | 1.65                 | 1.49                | 1.36                          | 1.35                     | 1.38                  | 1.36                   |             |
| Colour          | white<br>opaque       | grey<br>opaque       | blue grey<br>opaque | black<br>opaque               | beige<br>opaque          | black<br>opaque       | bright red<br>opaque   |             |
|                 |                       |                      |                     |                               |                          |                       |                        | Tolerance   |
| Diameter [mm]   | [kg/m]                | [kg/m]               | [kg/m]              | [kg/m]                        | [kg/m]                   | [kg/m]                | [kg/m]                 | [mm]        |
| 10              | 0.143                 | 0.143                | 0.129               | 0.118                         | 0.117                    | 0.120                 | 0.118                  | +0.10/+0.70 |
| 20              | 0.555                 | 0.555                | 0.502               | 0.458                         | 0.454                    | 0.465                 | 0.458                  | +0.20/+0.80 |
| 30              | 1.24                  | 1.24                 | 1.12                | 1.02                          | 1.01                     | 1.04                  | 1.02                   | +0.20/+1.00 |
| 40              | 2.19                  | 2.19                 | 1.98                | 1.80                          | 1.79                     | 1.83                  | 1.80                   | +0.20/+1.20 |
| 50              | 3.41                  | 3.41                 | 3.08                | 2.81                          | 2.79                     | 2.85                  | 2.81                   | +0.30/+1.30 |
| 60              | 4.91                  | 4.91                 | 4.43                | 4.05                          | 4.02                     | 4.11                  | 4.05                   | +0.30/+1.60 |
| 70              |                       |                      |                     | 5.48                          | 5.44                     | 5.57                  | 5.48                   |             |
| 80              |                       |                      |                     | 7.18                          | 7.13                     | 7.29                  | 7.18                   | +0.40/+2.00 |
| 90              |                       |                      |                     | 9.09                          |                          | 9.23                  | 9.09                   | +0.50/+2.20 |
| 100             |                       |                      |                     | 11.24                         |                          | 11.40                 | 11.24                  | +0.60/+2.50 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

## **TECAPEEK** Plates

|                 | TECAPEEK<br>CMF white | TECAPEEK<br>CMF grey | TECAPEEK<br>TS grey | TECAPEEK<br>ELS nano<br>black | TECAPEEK<br>TF10 natural | TECAPEEK<br>PNT black | TECAPEEK<br>bright red |             |
|-----------------|-----------------------|----------------------|---------------------|-------------------------------|--------------------------|-----------------------|------------------------|-------------|
| Polymer         | PEEK                  | PEEK                 | PEEK                | PEEK                          | PEEK                     | PEEK                  | PEEK                   |             |
| Density [g/cm³] | 1.65                  | 1.65                 | 1.49                | 1.36                          | 1.35                     | 1.38                  | 1.36                   |             |
| Colour          | white<br>opaque       | grey<br>opaque       | blue grey<br>opaque | black<br>opaque               | beige<br>opaque          | black<br>opaque       | bright red<br>opaque   |             |
|                 |                       |                      |                     |                               |                          |                       |                        | Tolerance   |
| Dimensions [mm] | [kg/m]                | [kg/m]               | [kg/m]              | [kg/m]                        | [kg/m]                   | [kg/m]                | [kg/m]                 | [mm]        |
| 5 × 500         | 4.72                  | 4.72                 | 4.27                | 3.89                          | 3.86                     | 3.95                  | 3.89                   | +0.20/+0.70 |
| 6 × 500         | 5.59                  | 5.59                 | 5.05                | 4.61                          | 4.57                     | 4.68                  | 4.61                   |             |
| 10×500          | 9.23                  | 9.23                 | 8.34                | 7.61                          | 7.55                     | 7.72                  | 7.61                   | +0.20/+1.10 |
| 12 × 500        | 11.18                 | 11.18                | 10.10               | 9.22                          | 9.15                     | 9.35                  | 9.22                   | +0.30/+1.50 |
| 15 × 500        | 13.78                 | 13.78                | 12.44               | 11.36                         | 11.28                    | 11.53                 | 11.36                  |             |
| 20 × 500        | 18.11                 | 18.11                | 16.36               | 14.93                         | 14.82                    | 15.15                 | 14.93                  |             |
| 25 × 500        | 22.45                 | 22.45                | 20.27               | 18.50                         | 18.37                    | 18.78                 | 18.50                  |             |
| 30 × 500        | 27.3                  | 27.3                 | 24.65               | 22.50                         | 22.34                    | 22.83                 | 22.50                  | +0.50/+2.50 |
| 40 × 500        | 36.0                  | 36.0                 | 32.5                | 29.6                          | 29.4                     | 30.1                  | 29.6                   |             |
| 50 × 500        |                       |                      |                     | 36.8                          | 36.5                     | 37.3                  |                        |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm



Stock item
Non-stock item special production

Modifications in colour and diameter on request. Other delivery lengths possible, also available ground respectively planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## TECATOR

TECATOR (PAI) is a high-performance thermoplastic characterized by outstanding loading capacity also in the cryogenic range. Compared to metal components, TECATOR parts with comparable properties are lighter and are used where weight saving is a key issue.

### Properties

- → Thermally resilient from the cryogenic range up to + 270 °C
- $\rightarrow$  High rigidity, high strength coupled with toughness
- $\rightarrow$  High long-term stability and high fatigue strength
- → Extremely high creep resistance
- → Good chemical resistance towards wide-ranging conventional solvents and lubricants, fuels and acids
- $\rightarrow$  High resistance to high-energy radiation
- $\rightarrow$  Self-extinguishing according to UL 94 V-0
- → Good machining capability using conventional tools and machinery

## Fields of application

Cryotechnics, electrical and electronic engineering, precision mechanics, mechanical engineering, medical technology, vacuum technology, aerospace, semi-conductor technology, automotive engineering.

## Applications

Switches and plug components, valve seats, bearing and valve balls, bearing bushes and plates, piston rings, sliding rails, rollers, insulating parts, burn-in holders, test sockets for semi-conductors, rotors, housing components, support rings, structural components subject to high mechanical and thermal stress.

#### Overview of types

#### TECATOR 5013 natural

(PAI) Yellow-brown, natural type. Highest compression strength and impact resistance. Excellent electrical insulation and high dielectric constant. TECATOR 5031 PV black (PAI, GR, TF) Black, modified sliding properties. Low coefficient of friction and high abrasion resistance. Reduced thermal expansion.

#### Application examples

Insulating bodies for plugs TECATOR 5013 natural (PAI) High thermal stability. Very good electrical insulation. Very low long-term thermal stability. Very good mechanical properties (> 200 °C).



Throw-over switch

TECATOR 5013 natural (PAI) High thermal stability. Highly abrasion resistant. Very good creep resistance. High long-term stability.



## **TECATOR** Rods

| 6               | TECATOR<br>5013<br>natural | TECATOR<br>5031 PV<br>black |            |
|-----------------|----------------------------|-----------------------------|------------|
| Polymer         | PAI                        | PAI                         |            |
| Density [g/cm³] | 1,40                       | 1,46                        |            |
| Colour          | yellow-<br>brown           | black<br>opaque             |            |
|                 | opaque                     |                             | Tolerance  |
| Diameter [mm]   | [kg/m]                     | [kg/m]                      | [mm]       |
| 5               | 0.044                      | •                           | 0.00/+1.20 |
| 6.25            | 0.064                      | 0.070                       |            |
| 7.5             | 0.087                      | •                           |            |
| 10              | 0.165                      | 0.167                       | 0.00/+1.50 |
| 12.5            | 0.240                      | 0.246                       |            |
| 15              | 0.352                      | 0.369                       |            |
| 20              | 0.620                      | 0.662                       | 0.00/+1.70 |
| 25              | 0.940                      | 1.01                        |            |
| 30              | 1.25                       | •                           |            |
| 40              | •                          | 0                           | 0.00/+1.80 |
| 50              | •                          | •                           |            |
| 60              | •                          | •                           |            |
| 80              | •                          |                             |            |
| 100             | •                          |                             | 0.00/+2.00 |

Tolerances according to DIN: Length +1.00 / +25.0 mm Stock lengths: 1,220 mm

## **TECATOR** Plates

|                 | TECATOR<br>5013<br>natural | TECATOR<br>5031 PV<br>black | -              |            |
|-----------------|----------------------------|-----------------------------|----------------|------------|
| Polymer         | PAI                        | PAI                         |                |            |
| Density [g/cm³] | 1,40                       | 1,46                        | a              |            |
| Colour          | yellow-<br>brown<br>opaque | black<br>opaque             | Tolerance      | Tolerance  |
| Dimensions [mm] | [kg/m]                     | [kg/m]                      | Thickness [mm] | Width [mm] |
| 1×150           | •                          | •                           | 0.00/+0.80     | 0.00/+5.00 |
| 2 × 150         | •                          | 0                           | ·              |            |
| 5 × 300         | 3.15                       | 0                           | 0.00/+1.20     | 0.00/+5.00 |
| 6.25 × 300      | 3.60                       | 3.77                        | -              |            |
| 7.5 × 300       | •                          | •                           | _              |            |
| 10 × 300        | 5.65                       | 5.87                        |                |            |
| 12.5 × 300      | 6.78                       | 7.09                        |                |            |
| 15 × 300        | 8.09                       | •                           |                |            |
| 20 × 300        | 10.96                      | 10.93                       | -              |            |
| 25 × 300        | 13.08                      | 0                           |                |            |
| 30 × 300        | 15.70                      | 0                           | _              |            |
| 40 × 300        | •                          | •                           |                |            |

Tolerances according to DIN: Length +1.00 / +25.0 mm Stock lengths: 1,220 mm

• Non-standard products (produced on request)



Sintered TECASINT stock shapes and direct formed parts have excellent long-term thermal stability. The broad temperature application spectrum of these materials ranges from –270 °C to +300 °C. Even when heated briefly to 350 °C, TECASINT materials will not melt or soften. Strength, dimensional stability and creep strength remain high under mechanical stress even during long-term usage.

## Properties

- → High strength over a wide temperature range from -270 °C to +300 °C
- $\rightarrow$  Long-term thermal stability 300 °C
- $\rightarrow$  HTD / A up to 470 °C
- → Good cryogenic properties
- $\rightarrow$  High pressure and creep strength
- $\rightarrow$  High radiation resistance
- → High purity, low outgassing in vacuum in accordance with ESA regulation ECSS-Q-70-02
- $\rightarrow$  Minimal thermal expansion
- $\rightarrow$  Minimal thermal conductivity
- → Excellent friction and abrasion properties even when not lubricated
- $\rightarrow$  Good chemical resistance to acids, fats and solvents
- $\rightarrow$  Excellent electrical insulation properties
- → Inherently flame resistant (UL 94 V0)

## Fields of application

The fields of application are many and varied: The mechanical engineering, automotive and gear manufacturing industries appreciate the outstanding sliding properties of the graphite / PTFE-modified TECASINT product types. In aerospace or vacuum technology, unreinforced or MoS<sub>2</sub>modified product types (for sliding applications) are used.

Important fields of application are found in the glass industry. Components made of TECASINT are frequently used for the careful handling of hot glass. Its good thermal and electrical insulating effect also makes TECASINT ideally suited for applications in welding torches and the electrical and electronics industry. TECASINT has a very low ion content and is used in particular for applications in the semi-conductor industry, for example in wafer applications.

## Forms of delivery and production processes

TECASINT is available as: Stock shapes (rods, plates, short pipes, disks). Parts for machining to drawing. Volume production parts using the direct forming process.

Precision components made of TECASINT are produced in small production runs using machining processes in accordance with customer drawing. For larger piece numbers (from appr. 1,000 pcs.) components can be manufactured at low cost using the direct forming (DF) method.

#### **Product families**

### **TECASINT 1000**

Very high modulus, high rigidity and hardness. Previous designation SINTIMID.

#### **TECASINT 2000**

Very high modulus, high rigidity and hardness. Compared to TECASINT 1000, significantly reduced moisture absorption. Higher toughness and improved machining capability. Ideally suited for direct forming components.

#### **TECASINT 4000**

Compared to the other TECASINT materials, **TECASINT 4000** is characterized by the following properties: Minimal water absorption. Highest stability against oxidation in air. Low friction. Optimum chemical resistance. HDT /A up to 470 °C. Different types available with high fracture strain and toughness or with high flexural modulus.

#### **TECASINT 5000** Non-melting high-temperature polyamidimide (PAI). Extremely good dimensional stability and load capacity up to 300 °C.

## TECASINT 8000

Matrix of PTFE reinforced with PI powder. Reduced creep under load. Excellent sliding and friction properties. Ideally suited for soft mating partners (stainless steel, aluminium, brass, bronze). Extreme chemical resistance and simple machining properties.

### Modifications

#### Unfilled

Maximum strength and elongation. Highest modulus. Minimal thermal and electrical conductivity. High purity. Low outgassing in accordance with ESA regulation ECSS-Q-70-20.

#### + 15 % graphite

Enhanced wear resistance and thermal ageing. Self lubricating, for lubricated and dry applications.

#### + 40 % graphite

Reduced thermal elongation. Maximum creep strength and resistance to thermal ageing. Improved self-lubrication. Reduced strength.

#### + 15 % graphite + 10 % PTFE Extremely low static friction and low coefficient of friction due to PTFE modification. Good properties also in dry running conditions due to self lubrication. For applications involving low friction and wear characteristics at medium temperatures and loads (< 200 °C).

#### + 15 % MoS<sub>2</sub>

Best friction and abrasion properties in vacuum. Frequently used in aerospace applications, in vacuum or in inert gases (techn. dry). Low outgassing in accordance with ESA regulation ECSS-Q-70-20.

#### + 30 % glass fibres

Reduced thermal elongation. High thermal-mechanical load properties. Good electrical insulation.

#### SD

Static dissipative / antistatic, permanently migration free. Surface resistance 10<sup>9-11</sup> Ω or 10<sup>7-9</sup> Ω. For explosion-proof equipment and in semi-conductor technology (test sockets).

#### **Overview of modifications**

| Description                  | Nomenclature | Availability TECASINT |      |      |      |      |  |  |  |
|------------------------------|--------------|-----------------------|------|------|------|------|--|--|--|
|                              | Stock shape  | 1000                  | 2000 | 4000 | 4100 | 5000 |  |  |  |
| Pure                         | x011         | 1011                  | 2011 | 4011 | 4111 | 5011 |  |  |  |
| 15 % graphite                | x021         | 1021                  | 2021 | 4021 | 4121 | -    |  |  |  |
| 40 % graphite                | x031         | 1031                  | 2031 | -    | -    | -    |  |  |  |
| 15 % graphite /<br>10 % PTFE | x061         | 1061                  | 2061 | -    | -    | -    |  |  |  |
| 15 % MoS <sub>2</sub>        | x391         | 1391                  | 2391 | -    | -    | -    |  |  |  |
| 30 % MoS₂                    | x041         | 1041                  | -    | -    | -    | -    |  |  |  |
| 30 % PTFE                    | x611         | 1611                  | -    | -    | -    | -    |  |  |  |
| 30 % GF                      | x051         | 1051                  | -    | -    | -    | 5051 |  |  |  |
| SD static<br>dissipative     | x201         | -                     | -    | -    | -    | 5201 |  |  |  |

#### Modifications **TECASINT 8000**

#### Overview of nomenclature TECASINT TECASINT xxxx

| 80 P / 20 PI | 8001 |
|--------------|------|
| 60 P / 40 PI | 8061 |
|              |      |

| 1st digit     | $\rightarrow$ PI basic material /product family    |
|---------------|----------------------------------------------------|
| 2nd/3rd digit | $\rightarrow$ Formulation code / Modification      |
| 4th digit     | $\rightarrow$ Production process (1 = stock shape, |
|               | 2 = direct formed part)                            |

#### Application examples

#### **Machined Parts**

TECASINT 1000 - 4000 (PI) Very high thermal resistance. High strength even at high temperatures.



Test socket TECASINT 4051 brown (PI) Low water absorption. High dimensional stability and thermal stability. Good chemical resistance.



## TECASINT 1000 Rods

|                 | <b>TECASINT 1011</b><br>natural<br>(SINTIMID PUR HT) | <b>TECASINT 1021</b><br>black<br>(SINTIMID 15 G) | <b>TECASINT 1031</b><br>black<br>(SINTIMID 40 G) | <b>TECASINT 1061</b><br>black<br>(SINTIMID PVX) | <b>TECASINT 1391</b><br>black<br>(SINTIMID 15M) |                   |
|-----------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------|
| Polymer         | PI                                                   | PI                                               | PI                                               | PI                                              | PI                                              |                   |
| Density [g/cm³] | 1,34                                                 | 1,42                                             | 1,57                                             | 1,48                                            | 1,49                                            |                   |
| Colour          | black                                                | black                                            | black                                            | black                                           | black                                           |                   |
| Diameter [mm]   |                                                      |                                                  |                                                  |                                                 |                                                 | Tolerance<br>[mm] |
| 6.3 (1/4")      | •                                                    | •                                                | •                                                | •                                               | •                                               | 0.00/+0.80        |
| 8               | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 10              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 12.7 (1/2")     | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 15.8 (5/8")     | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 25.4 (1")       | •                                                    | •                                                | •                                                | •                                               | •                                               | 0.00/+0.80        |
| 30              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 35              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 38.1 (1 1/2")   | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 40              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 45              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 50.8 (2")       | •                                                    | •                                                | •                                                | •                                               | •                                               | 0.00/+1.00        |
| 55              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 60              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 65              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 70              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 75              | •                                                    | •                                                | •                                                | •                                               | •                                               |                   |
| 80              | •                                                    | •                                                |                                                  | •                                               |                                                 |                   |
| 85              | •                                                    | •                                                |                                                  |                                                 |                                                 |                   |
| 90              | •                                                    | •                                                |                                                  |                                                 |                                                 |                   |
| 95              | •                                                    | •                                                |                                                  |                                                 |                                                 |                   |
| 100             | 0                                                    | 0                                                | •••••                                            |                                                 | ••••••                                          |                   |

• Standard products (from stock or delivery at short notice)

• Non-standard products (produced on request)

### **TECASINT 1000**

| Delivery dimensions [mm] | 250 | 500 | 750 | 1,000 |
|--------------------------|-----|-----|-----|-------|
| Ø 6 – 15                 | •   | ٠   |     |       |
| from Ø 16                | •   | •   | •   | •     |

Also available ground.

Other diameters on request.

All information without guarantee.

## TECASINT 4000 Rods

| TECASINT 4011 / 4021     |     |     |     |       |
|--------------------------|-----|-----|-----|-------|
| Delivery dimensions [mm] | 250 | 500 | 750 | 1,000 |
| Ø 6 – 15                 | ٠   | ٠   |     |       |
| Ø16-80                   | ٠   | ٠   | •   | ٠     |

| TECASINT 4111 / 4121     |     |     |
|--------------------------|-----|-----|
| Delivery dimensions [mm] | 250 | 500 |
| Ø6-15                    | ٠   | •   |
| Ø 16-80                  | ٠   | ٠   |

All information without guarantee.

## TECASINT 2000 Rundstäbe

|                 | TECASINT 2011<br>natural | TECASINT 2021<br>black | TECASINT 2031<br>black | TECASINT 2061<br>black | TECASINT 2391<br>black |            |
|-----------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------|
| Polymer         | PI                       | PI                     | PI                     | PI                     | PI                     |            |
| Density [g/cm³] | 1,38                     | 1,45                   | 1,59                   | 1,52                   | 1,54                   |            |
| Colour          | brown                    | black                  | anthracite             | anthracite             | black                  |            |
|                 |                          |                        |                        |                        |                        | Tolerance  |
| Diameter [mm]   |                          |                        |                        |                        |                        | [mm]       |
| 6.3 (1/4")      | •                        | •                      | •                      | •                      | •                      | 0.00/+0.80 |
| 8               | •                        | •                      | •                      | •                      | •                      |            |
| 10              | •                        | •                      | •                      | •                      | •                      |            |
| 12.7 (1/2")     | •                        | •                      | •                      | •                      | •                      |            |
| 15.8 (5/8")     | •                        | •                      | •                      | •                      | •                      |            |
| 19.1 (3/4")     | •                        | •                      | •                      | •                      | •                      |            |
| 25.4 (1")       | •                        | •                      | •                      | •                      | •                      | 0.00/+0.80 |
| 30              | 0                        | 0                      | 0                      | 0                      | 0                      |            |
| 35              | 0                        | •                      | 0                      | •                      | 0                      |            |
| 38.1 (1 1/2")   | •                        | 0                      | 0                      | 0                      | •                      |            |
| 40              | 0                        | 0                      | 0                      | 0                      | •                      |            |
| 45              | 0                        | 0                      | 0                      | 0                      | •                      |            |
| 50.8 (2")       | •                        | •                      | •                      | •                      | •                      | 0.00/+1.00 |
| 55              | •                        | 0                      | 0                      | •                      | •                      |            |
| 60              | 0                        | 0                      | 0                      | •                      | 0                      |            |
| 65              | 0                        | 0                      | •                      | •                      | 0                      |            |
| 70              | •                        | 0                      | 0                      | •                      | •                      |            |
| 75              | •                        | •                      | 0                      | •                      | •                      |            |
| 80              | •                        | •                      |                        |                        |                        |            |
| 85              | •                        | •                      |                        |                        |                        |            |
| 90              | •                        | •                      |                        |                        |                        |            |
| 95              | •                        | •                      |                        |                        |                        |            |
| 100             | •                        | 0                      |                        |                        |                        |            |

• Standard products (from stock or delivery at short notice)

• Non-standard products (produced on request)

## TECASINT 2000

| Delivery dimensions [mm] | 250 | 500 | 750 | 1,000 |
|--------------------------|-----|-----|-----|-------|
| Ø 6 – 15                 | •   | ٠   |     |       |
| from Ø 16                | ٠   | ٠   | ٠   | •     |

Also available ground. Other diameters on request.

## **TECASINT 1000** Plates

|                 | <b>TECASINT 1011</b><br>natural<br>(SINTIMID PUR HT) | <b>TECASINT 1021</b><br>black<br>(SINTIMID 15 G) | <b>TECASINT 1031</b><br>black<br>(SINTIMID 40 G) | <b>TECASINT 1061</b><br>black<br>(SINTIMID PVX) | <b>TECASINT 1391</b><br>black<br>(SINTIMID 15 H) |                   |
|-----------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------|
| Polymer         | PI                                                   | PI                                               | PI                                               | PI                                              | PI                                               |                   |
| Density [g/cm³] | 1,34                                                 | 1,42                                             | 1,57                                             | 1,48                                            | 1,49                                             |                   |
| Colour          | black                                                | black                                            | black                                            | black                                           | black                                            |                   |
| Thickness [mm]  |                                                      |                                                  |                                                  |                                                 |                                                  | Tolerance<br>[mm] |
| 6               | •                                                    | •                                                | •                                                | •                                               | •                                                | 0.00/+1.00        |
| 10              | •                                                    | 0                                                | •                                                | 0                                               | 0                                                |                   |
| 12              | •                                                    | 0                                                | 0                                                | 0                                               | 0                                                |                   |
| 15.8            | •                                                    | •                                                | •                                                | •                                               | •                                                |                   |
| 20              | •                                                    | ٠                                                | •                                                | •                                               | •                                                |                   |
| 25              | •                                                    | •                                                | •                                                | •                                               | 0                                                | 0.00/+1.00        |
| 30              | •                                                    | •                                                | •                                                | •                                               | •                                                |                   |
| 35              | •                                                    | •                                                | •                                                | •                                               | •                                                |                   |
| 40              | •                                                    | •                                                | •                                                | •                                               | •                                                |                   |
| 45              | •                                                    | •                                                | •                                                | •                                               | •                                                |                   |
| 50              | •                                                    | •                                                | •                                                | •                                               | •                                                |                   |
| 60              | •                                                    | •                                                | •                                                | •                                               | •                                                |                   |
| 70              | 0                                                    | •                                                | •                                                | •                                               | 0                                                | 0.00/+1.50        |
| 80              | •                                                    | •                                                | •                                                | •                                               | •                                                |                   |
| 90              | •                                                    | •                                                |                                                  | •                                               |                                                  |                   |
| 100             | 0                                                    |                                                  |                                                  |                                                 |                                                  |                   |

• Standard products (from stock or delivery at short notice)

• Non-standard products (produced on request)

| TECASINT 1000<br>Delivery dimensions [mm] | 125<br>× 150 | 125<br>× 300 | 300<br>× 250 | 300<br>× 500 | 300<br>× 750 | 300<br>× 1,000 |
|-------------------------------------------|--------------|--------------|--------------|--------------|--------------|----------------|
| 2 – 50                                    | •            | ٠            | •            | ٠            | ٠            | ٠              |
| 60 - 100                                  |              |              | ٠            | ٠            | ٠            | ٠              |

On request: Intermediate thickness dimensions.

All information without guarantee.

## **TECASINT 4000 Plates**

| TECASINT 4011 / 4021     | 125   | 125   | 250   | 500   | 750   | 300     |
|--------------------------|-------|-------|-------|-------|-------|---------|
| Delivery dimensions [mm] | × 150 | × 300 | × 300 | × 300 | × 300 | × 1,000 |
| 2 - 85                   | •     | ٠     | ٠     | ٠     | ٠     | •       |

Max. dimension: 300 x 1,000 mm

All information without guarantee.

| TECASINT 4111 / 4121     | 125   | 125   | 250   | 300   |
|--------------------------|-------|-------|-------|-------|
| Delivery dimensions [mm] | × 150 | × 300 | × 300 | × 500 |
| 2 - 85                   | •     | ٠     | ٠     | ٠     |

Max. dimension: 300 x 500 mm

All information without guarantee.

## TECASINT 2000 / 5000 Plates

|                 | TECASINT<br>2011 natural | TECASINT<br>2021 black | TECASINT<br>2031 black | TECASINT<br>2061 black | TECASINT<br>2391 black | <b>TECASINT<br/>5011 natural</b><br>(SINTIMID<br>PAI PUR) | TECASINT<br>5051<br>grey-green<br>(SINTIMID<br>PAI GF30) |                   |
|-----------------|--------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------------------------------------------|----------------------------------------------------------|-------------------|
| Polymer         | PI                       | PI                     | PI                     | PI                     | PI                     | PAI                                                       | PAI                                                      |                   |
| Density [g/cm³] | 1,38                     | 1,45                   | 1,59                   | 1,52                   | 1,54                   | 1,38                                                      | 1,57                                                     |                   |
| Colour          | brown                    | black                  | anthracite             | anthracite             | black                  | sandy                                                     | dark brown                                               |                   |
| Thickness [mm]  |                          |                        |                        |                        |                        |                                                           |                                                          | Tolerance<br>[mm] |
| 6               | •                        | •                      | •                      | •                      | •                      | •                                                         | •                                                        | 0.00/+1.00        |
| 10              | •                        | •                      | •                      | •                      | 0                      | •                                                         | •                                                        |                   |
| 12              | •                        | ٠                      | •                      | •                      | •                      | •                                                         | •                                                        |                   |
| 15.8            | •                        | •                      | •                      | •                      | •                      | •                                                         | •                                                        |                   |
| 20              | •                        | ٠                      | •                      | •                      | •                      | •                                                         | •                                                        |                   |
| 25              | •                        | ٠                      | 0                      | •                      | 0                      | •                                                         | ٠                                                        | 0.00/+1.00        |
| 30              | 0                        | •                      | •                      | •                      | 0                      | •                                                         | ٠                                                        |                   |
| 35              | •                        | •                      | •                      | •                      | •                      | •                                                         | •                                                        |                   |
| 40              | •                        | •                      | •                      | •                      | •                      | •                                                         | •                                                        |                   |
|                 |                          |                        |                        |                        |                        |                                                           |                                                          |                   |

0.00/+1.50 

• Standard products (from stock or delivery at short notice)

• Non-standard products (produced on request)

| TECASINT 2000 / 5000<br>Delivery dimensions [mm] | 125<br>× 150 | 125<br>× 300 | 300<br>× 250 | 300<br>× 500 | 300<br>× 750 | 300<br>× 1,000 |
|--------------------------------------------------|--------------|--------------|--------------|--------------|--------------|----------------|
| 2 - 50                                           | ٠            | ٠            | •            | •            | ٠            | •              |
| 60 - 100                                         |              |              | ٠            | ٠            | ٠            | ٠              |

## TECASINT 8000 Plates

| TECASINT 8001 / 8061     | 290   | 290   |
|--------------------------|-------|-------|
| Delivery dimensions [mm] | × 490 | × 990 |
| 2 - 65                   | ٠     | •     |

On request: Intermediate thickness dimensions. All information without guarantee.



Polyolefins such as polyethylene (TECAFINE PE) and polypropylene (TECAFINE PP) are semi-crystalline thermoplastics from the group of standard polymers. Alongside their minimal density, they are characterized primarily by good chemical resistance, low water absorption and good electrical insulating properties. Acrylonitrile-butadienestyrene graft copolymer (TECARAN ABS) is an amorphous thermoplastic which has a high impact strength even at low temperatures, as well as low moisture absorption. PPE (TECANYL) is used predominantly for components in which high heat deflection temperature, dimensional stability and dimensional accuracy are key.

#### **Overview of types**

#### **TECAFINE PE10**

(PE-UHMW) Very good sliding friction properties. Very good electrical insulation. Tough at low temperatures.

#### **TECAFINE PE5**

(PE-HMW) Good sliding properties, abrasion resistant.

**TECAFINE PE** (*PE-HD*) Very low moisture absorption. Easily weldable. TECAFINE PP (PP) Very low moisture absorption, very good electrical insulation.

**TECAPRO MT** (*PP*) → p. 70

**TECAPRO AM natural** (PP)  $\rightarrow$  p. 66

TECAFINE PMP natural (PMP) Transparent, also in the UV range. Very good electrical insulation.

#### TECANYL 731 grey (PPE)

Good strength. Very good electrical insulation.

**TECANYL GF30** (PPE GF) Very high rigidity, good welding and adhesion capability.

TECANYL MT (PPE)  $\rightarrow$  p. 70

#### **TECARAN ABS** (ABS) Extreme rigidity

and toughness. Very good electrical insulation. *Grip handle for kitchen appliances TECARAN black* (*ABS*) Good strength and toughness. High impact strength.

Minimal weight.

Easily bonded.

Application examples

Stripper TECAFINE PE natural (PE) Good sliding properties. Food conformity. Resistant to cleaning agents. High degree of toughness.



| 6               | TECAFINE<br>PMP natural     | TECANYL<br>731 grey | TECANYL<br>GF30 natural | TECARAN<br>ABS grey |             |
|-----------------|-----------------------------|---------------------|-------------------------|---------------------|-------------|
| Polymer         | PMP                         | PPE                 | PPE                     | ABS                 |             |
| Density [g/cm³] | 0.83                        | 1.10                | 1.30                    | 1.04                |             |
| Colour          | light yellow<br>transparent | grey<br>opaque      | beige<br>opaque         | grey<br>opaque      |             |
|                 |                             |                     |                         |                     | Tolerance   |
| Diameter [mm]   | [kg/m]                      | [kg/m]              | [kg/m]                  | [kg/m]              | [mm]        |
| 10              | 0.073                       | 0.096               | 0.114                   | 0.091               | +0.10/+0.80 |
| 12              | 0.105                       | 0.139               | 0.164                   | 0.131               | +0.20/+0.90 |
| 14              | 0.141                       | 0.187               | 0.220                   | 0.176               |             |
| 15              | 0.161                       | 0.213               | 0.252                   | 0.201               |             |
| 16              | 0.182                       | 0.241               | 0.285                   | 0.228               |             |
| 18              | 0.229                       | 0.303               | 0.358                   | 0.287               |             |
| 20              | 0.281                       | 0.372               | 0.440                   | 0.352               |             |
| 22              | 0.343                       | 0.454               | 0.537                   | 0.429               | +0.20/+1.20 |
| 25              | 0.439                       | 0.582               | 0.688                   | 0.550               |             |
| 28              | 0.548                       | 0.726               | 0.858                   | 0.686               |             |
| 30              | 0.627                       | 0.831               | 0.982                   | 0.785               |             |
| 32              | 0.711                       | 0.942               | 1.11                    | 0.891               |             |
| 36              | 0.905                       | 1.20                | 1.42                    | 1.13                | +0.20/+1.60 |
| 40              | 1.11                        | 1.47                | 1.74                    | 1.39                |             |
| 45              | 1.42                        | 1.88                | 2.22                    | 1.77                | +0.30/+2.00 |
| 50              | 1.74                        | 2.31                | 2.72                    | 2.18                |             |
| 56              | 2.17                        | 2.88                | 3.40                    | 2.72                |             |
| 60              | 2.51                        | 3.32                | 3.93                    | 3.14                | +0.30/+2.50 |
| 65              | 2.93                        | 3.89                | 4.59                    | 3.67                |             |
| 70              | 3.39                        | 4.49                | 5.31                    | 4.25                |             |
| 75              | 3.91                        | 5.18                | 6.13                    | 4.90                | +0.40/+3.00 |
| 80              | 4.44                        | 5.88                | 6.95                    | 5.56                |             |
| 90              | 5.62                        | 7.45                | 8.81                    | 7.04                | +0.50/+3.40 |
| 100             | 6.94                        | 9.20                | 10.88                   | 8.70                | +0.60/+3.80 |
| 110             | 8.41                        | 11.14               | 13.17                   | 10.54               | +0.70/+4.20 |
| 120             | 10.01                       | 13.27               | 15.68                   | 12.54               | +0.80/+4.60 |
| 125             | 10.84                       | 14.37               | 16.98                   | 13.59               |             |
| 135             | 12.69                       | 16.82               | 19.88                   | 15.90               | +0.90/+5.40 |
| 140             | 13.63                       | 18.06               | 21.34                   | 17.07               |             |
| 150             | 15.65                       | 20.74               | 24.51                   | 19.61               | +1.00/+5.80 |
| 160             | 17.82                       | 23.61               | 27.9                    | 22.33               | +1.10/+6.30 |
| 165             | 19.06                       | 25.3                | 29.9                    | 23.88               | +1.20/+7.40 |
| 180             | 22.58                       | 29.9                | 35.4                    | 28.3                |             |
| 200             | 27.9                        | 37.0                | 43.7                    | 35.0                | +1.30/+8.50 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

Stock item Non-stock item special production **Modifications in colour and diameter on request.** Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## **OTHERS** Plates

|                              | TECAFINE<br>PMP natural | TECANYL<br>731 grey | TECANYL<br>GF30 natural | TECARAN<br>ABS grey |             |
|------------------------------|-------------------------|---------------------|-------------------------|---------------------|-------------|
| Polvmer                      | PMP                     | PPE                 | PPE                     | ABS                 |             |
| Density [q/cm <sup>3</sup> ] | 0.83                    | 1.10                | 1.30                    | 1.04                |             |
| Colour                       | light yellow            | qrey                | beige                   | grey                |             |
|                              | transparent             | opaque              | opaque                  | opaque              |             |
|                              |                         |                     |                         |                     | Tolerance   |
| Dimensions [mm]              | [kg/m]                  | [kg/m]              | [kg/m]                  | [kg/m]              | [mm]        |
| 5 × 500                      |                         | 3.15                | 3.72                    |                     | +0.20/+0.70 |
| 6 × 500                      |                         | 3.73                | 4.40                    |                     |             |
| 8 × 500                      |                         | 5.00                | 5.91                    |                     | +0.20/+1.10 |
| 10 × 500                     | 4.64                    | 6.15                | 7.27                    | 5.82                |             |
| 10 × 620                     | 5.73                    | 7.59                | 8.97                    | 7.17                |             |
| 12 × 500                     | 5.62                    | 7.45                | 8.81                    | 7.05                | +0.30/+1.50 |
| 12 × 620                     | 6.93                    | 9.19                | 10.86                   | 8.69                |             |
| 15 × 500                     | 6.93                    | 9.19                | 10.86                   | 8.69                |             |
| 15 × 620                     | 8.55                    | 11.33               | 13.39                   | 10.71               |             |
| 16 × 500                     | 7.37                    | 9.77                | 11.54                   | 9.23                |             |
| 16 × 620                     | 9.09                    | 12.04               | 14.23                   | 11.38               |             |
| 18 × 500                     | 8.24                    | 10.92               | 12.91                   | 10.33               |             |
| 18 × 620                     | 10.16                   | 13.47               | 15.91                   | 12.73               |             |
| 20 × 500                     | 9.11                    | 12.08               | 14.27                   | 11.42               |             |
| 20 × 620                     | 11.24                   | 14.89               | 17.60                   | 14.08               |             |
| 20 × 1,000 <sup>*</sup>      |                         | 23.80               | 28.1                    |                     |             |
| 25 × 500                     | 11.29                   | 14.97               | 17.69                   | 14.15               |             |
| 25 × 620                     | 13.92                   | 18.45               | 21.81                   | 17.45               |             |
| 25 × 1,000                   |                         | 29.5                | 34.9                    |                     |             |
| 30 × 500                     | 13.73                   | 18.20               | 21.51                   | 17.21               | +0.50/+2.50 |
| 30 × 620                     | 16.93                   | 22.44               | 26.5                    | 21.22               |             |
| 30×1,000                     |                         | 35.9                | 42.4                    |                     |             |
| 35 × 500                     | 15.91                   | 21.09               | 24.93                   | 19.94               |             |
| 35 × 620                     | 19.62                   | 26.0                | 30.7                    | 24.59               |             |
| 35 × 1,000                   | 10.00                   | 41.6                | 49.1                    |                     |             |
| 40 × 500                     | 18.09                   | 23.98               | 28.3                    | 22.67               |             |
| 40 × 620                     | 22.31                   | 29.0                | 34.9                    | 28.0                |             |
| 40 × 1,000                   | דר חר                   | 47.5                | 2.2                     |                     |             |
| 45 × 500                     | 20.27                   | 20.3                | 21.0                    | 25.4                |             |
| 45 × 620                     | 25.0                    | ED U                | 55.2                    | 51.5                |             |
| 45 × 1,000                   | 77 /E                   | ט.ככ<br>ס בר        | 02.0<br>DE D            | 70 1                |             |
| 50 × 500                     | 22.43                   | 25.0                | ээ.2<br>Лэ Л            | 20.1                |             |
| 50 × 1 000*                  | 27.7                    | 58.6                | c+<br>69 3              | 54.7                |             |
| 50 × 1,000                   | 27.0                    | 35.8                | 47.3                    | 33.9                | +0 50/+3 50 |
| 60 × 500                     | 27.0                    | 44.7                | 57.7                    | 41.8                | 10.50715.50 |
| 60 x 1 000*                  |                         | 2<br>70 F           | 87.4                    | 41.0                |             |
| 70 x 500                     | 31 4                    | , 0.0               |                         | 29.2                |             |
| 80 x 500                     | 31.7                    |                     |                         | 45.7                | +0.50/+5.00 |
| 90 x 500                     | 40 A                    |                     |                         |                     |             |
| 100 × 500                    | 44.8                    |                     |                         | 56.1                |             |
|                              | 11.0                    |                     |                         | 50.1                |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm

\* Stock length: 2,000 mm



Stock item special production

Modifications in colour and diameter on request. Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

Others



## Food technology

In many areas of industry, technical plastics play a vital role in improving the efficiency and competitive standing of customer applications. Lightweight, versatile plastics have a proven track record stretching back over many decades in the processing and packaging of foods. Their success is based on a combination of material benefits which are brought to bear even at raised temperature levels. These include primarily good mechanical properties and high resistance to chemicals.

There are widely varied application possibilities for technical plastics in plant and machinery for meat, fish and poultry processing. Materials from Ensinger enhance production speed and safety in the manufacture of dairy produce, baked goods and confectionery production. They are frequently used in this type of application as gears, bearing bushes or in the form of other machine components. Plastics can also come into direct contact with foodstuffs, for example in filling, mixing and portioning systems. Stringent demands are placed on these plastics, particularly in the case of plant components which come into direct contact with food. The main objective of EU and US regulations is to exclude any damaging effects due to the migration of substances.

At Ensinger, product safety takes number one priority. The special care taken in this field is reflected by productspecific conformity certificates with FDA approval for raw material, regulation (EC) No 1935/2004, (EU) No 10/2011 (migration tested on semi-finished products) as well as (EC) No 2023/2006 and seamless traceability.

Our Quality Management is in step with international standards and is firmly rooted in our corporate procedures. Above and beyond DIN EN ISO 9001, Ensinger GmbH is also certified to the Medical Products Standard DIN EN ISO 13485. Our semi-finished products are manufactured in compliance with the requirements of regulation (EU) No 2023/2006 on good manufacturing practice (GMP) for materials and articles intended to come into contact with food.

#### Ensinger materials for food technology

The conformity for food contact is issued order-related with the following contents: → FDA approval for raw material

→ (EC) No 1935/2004

→ (EU) No 10/2011

→ (EC) No 2023/2006

#### Standard portfolio

**TECAFORM AH natural**  $\rightarrow$  p. 14 ff.

**TECAFORM AH black**  $\rightarrow$  p. 14 ff.

**TECAFORM AD natural**  $\rightarrow$  p. 14 ff.

**TECAMID 6 natural**  $\rightarrow$  p. 20 ff.

**TECAMID 66 natural**  $\rightarrow$  p. 20 ff.

**TECAST T natural** → p. 26 ff.

**TECAPET white** → p. 32 ff.

*TECAPET TF grey* → p. 32 ff.

**TECANAT natural**  $\rightarrow$  p. 36 ff.

**TECAFLON PVDF natural**  $\rightarrow$  p. 39 ff.

**TECAPEEK natural** → p. 48 ff.

**TECAPEEK black** → p. 48 ff.

# Special portfolio Optically detectable

materials:

**TECAFORM AH blue** (POM-C) Good chemical resistance. High flexural fatigue strength.

**TECAMID 6 blue** (PA 6) Good toughness and strength. Good chemical resistance.

TECAPEEK blue (PEEK) High permanent operating temperature (260 °C). High mechanical strength even at high temperatures.

Inductively detectable materials:

TECAFORM AH ID (POM-C, detectable filler) Very good machining properties. Minimal water absorption. Available in blue and grey.

**TECAMID 6 ID blue** (PA 6, detectable filler) Good toughness and strength.

### TECAPEEK ID blue

(PEEK, detectable filler) Suitable for permanent utilization at up to 260 °C. Excellent chemical resistance. Optically detectable, sliding friction modified high temperature material:

TECAPEEK TF10 blue (PEEK TF) Very good sliding properties. Excellent chemical resistance.

#### Application examples

#### Scraper

TECAFORM AH ID grey (POM-C, detectable filler) Inductively detectable. Good toughness and strength. Good resistance to cleaning agents.



#### Piston

TECADUR PET natural (PET) High strength. Good creep resistance. High dimensional stability.



#### Conveyor screw

TECAGLIDE green (PA 6 C) Low sliding coefficient. Good abrasion behaviour. Good machining capability. For applications without food contact.

### Throughfeed filler

TECAMID 6 natural (PA 6) High degree of toughness. Resistant to oils, greases and fuels. Good abrasion resistance. MAJA-Maschinenfabrik Hermann Schill GmbH & Co KG

Object slide

TECAFORM AD natural (POM-H) High strength. Good chemical resistance. Good machinability. Schreyer Sondermaschinen GmbH





FDA conformity (on raw materials) tested on semi-finished products: (EC) No 1935/2004 (EU) No 10/2011 (EC) No 2023/2006

## FOOD TECHNOLOGY Rods

|                              | TECAFORM<br>AH blue | TECAFORM<br>AH ID blue | TECAFORM<br>AH ID grey | TECAMID<br>6 blue | TECAMID<br>6 ID blue | TECAPEEK<br>blue | TECAPEEK<br>TF10 blue | TECAPEEK<br>ID blue |                   |
|------------------------------|---------------------|------------------------|------------------------|-------------------|----------------------|------------------|-----------------------|---------------------|-------------------|
| Polymer                      | POM-C               | POM-C                  | POM-C                  | PA 6              | PA 6                 | PEEK             | PEEK                  | PEEK                |                   |
| Density [g/cm <sup>3</sup> ] | 1.41                | 1.49                   | 1.49                   | 1.14              | 1.24                 | 1.32             | 1.38                  | 1.49                |                   |
| Colour                       | blue                | blue                   | grey                   | ivory             | blue grey            | blue             | blue                  | blue grey           |                   |
|                              | opaque              | opaque                 | opaque                 | opaque            | opaque               | opaque           | opaque                | opaque              |                   |
| Diameter [mm]                | [ka/m]              | [ka/m]                 | [ka/m]                 | [ka/m]            | [ka/m]               | [ka/m]           | [ka/m]                | [ka/m]              | Tolerance<br>[mm] |
| 10                           | 0.122               | 0.129                  | 0.129                  | 0.099             | 0.107                | 0.114            | 0.120                 | 0.129               | +0.10/+0.70       |
| 12                           | 0.176               | 0.187                  | 0.187                  | 0.143             | 0.155                | 0.165            | 0.173                 | 0.187               | +0.20/+0.80       |
| 14                           | 0.237               | 0.251                  | 0.251                  | 0.192             | 0.209                |                  | 0.232                 | 0.251               |                   |
|                              | 0.271               | 0.287                  | 0.287                  | 0.219             | 0.239                | 0.254            | 0.266                 | 0.287               |                   |
| 16                           | 0.308               | 0.325                  | 0.325                  | 0.249             | 0.270                | 0.288            | 0.301                 | 0.325               |                   |
| 18                           | 0.387               | 0.409                  | 0.409                  | 0.313             | 0.340                | 0.362            | 0.378                 | 0.409               |                   |
| 20                           | 0.475               | 0.502                  | 0.502                  | 0.384             | 0.417                | 0.444            | 0.465                 | 0.502               |                   |
| 22                           | 0.577               | 0.610                  | 0.610                  | 0.466             | 0.507                | 0.540            | 0.565                 | 0.610               | +0.20/+1.00       |
| 25                           | 0.740               | 0.782                  | 0.782                  | 0.599             | 0.651                | 0.693            | 0.725                 | 0.782               |                   |
| 28                           | 0.924               | 0.976                  | 0.976                  | 0.747             | 0.813                | 0.865            | 0.904                 | 0.976               |                   |
| 30                           | 1.06                | 1.12                   | 1.12                   | 0.855             | 0.930                | 0.990            | 1.04                  | 1.12                |                   |
| 32                           | 1.21                | 1.28                   | 1.28                   | 0.977             | 1.06                 | 1.13             | 1.18                  | 1.28                | +0.20/+1.20       |
| 36                           | 1.52                | 1.61                   | 1.61                   | 1.23              | 1.34                 | 1.42             | 1.49                  | 1.61                |                   |
| 40                           | 1.87                | 1.98                   | 1.98                   | 1.51              | 1.65                 | 1.75             | 1.83                  | 1.98                |                   |
| 45                           | 2.37                | 2.50                   | 2.50                   | 1.92              | 2.08                 | 2.22             | 2.32                  | 2.50                | +0.30/+1.30       |
| 50                           | 2.91                | 3.08                   | 3.08                   | 2.36              | 2.56                 | 2.73             | 2.85                  | 3.08                |                   |
| 56                           | 3.64                | 3.85                   | 3.85                   | 2.95              | 3.20                 | 3.41             | 3.57                  | 3.85                |                   |
| 60                           | 4.20                | 4.43                   | 4.43                   | 3.39              | 3.69                 | 3.93             | 4.11                  | 4.43                | +0.30/+1.60       |
| 65                           | 4.91                | 5.19                   | 5.19                   | 3.97              | 4.32                 | 4.60             | 4.81                  | 5.19                |                   |
| 70                           | 5.69                | 6.01                   | 6.01                   | 4.60              | 5.00                 | 5.32             | 5.57                  | 6.01                |                   |
| 75                           | 6.56                | 6.93                   | 6.93                   | 5.30              | 5.77                 | 6.14             | 6.42                  | 6.93                | +0.40/+2.00       |
| 80                           | 7.45                | 7.87                   | 7.87                   | 6.02              | 6.55                 | 6.97             | 7.29                  | 7.87                |                   |
| 85                           | 8.42                | 8.90                   | 8.90                   | 6.81              | 7.41                 |                  |                       |                     | +0.50/+2.20       |
| 90                           | 9.43                | 9.96                   | 9.96                   | 7.62              | 8.29                 | 8.82             |                       | 9.96                |                   |
| 100                          | 11.65               | 12.31                  | 12.31                  | 9.42              | 10.24                | 10.90            |                       | 12.31               | +0.60/+2.50       |
| 110                          | 14.13               | 14.93                  | 14.93                  | 11.43             | 12.43                | 13.23            |                       |                     | +0.70/+3.00       |
| 120                          | 16.85               | 17.81                  | 17.81                  | 13.63             | 14.82                | 15.78            |                       |                     | +0.80/+3.50       |
| 125                          | 18.26               | 19.30                  | 19.30                  | 14.76             | 16.06                | 17.10            |                       |                     |                   |
| 130                          | 19.79               | 20.91                  | 20.91                  | 16.00             | 17.40                | 18.52            |                       |                     | +0.90/+3.80       |
| 135                          | 21.31               | 22.52                  | 22.52                  | 17.23             | 18.74                | 19.95            |                       |                     |                   |
| 140                          | 22.89               | 24.19                  | 24.19                  | 18.51             | 20.13                | 21.43            |                       |                     |                   |
| 150                          | 26.3                | 27.8                   | 27.8                   | 21.27             | 23.13                | 24.62            |                       |                     | +1.00/+4.20       |
| 160                          | 29.9                |                        |                        | 24.20             |                      |                  |                       |                     | +1.10/+4.50       |
| 165                          | 31.9                |                        |                        | 25.8              |                      |                  |                       |                     | +1.20/+5.00       |
| 180                          | 37.9                |                        |                        | 30.6              |                      |                  |                       |                     |                   |
| 200                          | 46.7                |                        |                        | 37.8              |                      |                  |                       |                     | +1.30/+5.50       |
| 250                          | 72.8                |                        |                        | 58.9              |                      |                  |                       |                     | +1.50/+6.20       |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

Stock item Non-stock item – special production **Modifications in colour and diameter on request.** Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

## FOOD TECHNOLOGY Plates

|                              | TECAFORM<br>AH blue | TECAFORM<br>AH ID grey | TECAFORM<br>AH ID blue | TECAMID<br>6 blue | TECAMID<br>6 ID blue | TECAPEEK<br>blue | TECAPEEK<br>ID blue |             |
|------------------------------|---------------------|------------------------|------------------------|-------------------|----------------------|------------------|---------------------|-------------|
| Polymer                      | POM-C               | POM-C                  | POM-C                  | PA 6              | PA 6                 | PEEK             | PEEK                |             |
| Density [g/cm <sup>3</sup> ] | 1.41                | 1.49                   | 1.49                   | 1.14              | 1.24                 | 1.32             | 1.49                |             |
| Colour                       | blue                | grey                   | blue                   | ivory             | blue grey            | blue             | blue grey           |             |
|                              | opaque              | opaque                 | opaque                 | opaque            | opaque               | opaque           | opaque              |             |
|                              |                     |                        |                        |                   |                      |                  |                     | Tolerance   |
| Dimensions [mm]              | [kg/m]              | [kg/m]                 | [kg/m]                 | [kg/m]            | [kg/m]               | [kg/m]           | [kg/m]              | [mm]        |
| 5 × 500                      | 4.04                |                        |                        | 3.26              |                      |                  |                     | +0.20/+0.70 |
| 6 × 500                      | 4.78                |                        |                        | 3.86              |                      |                  |                     |             |
| 8 × 500                      | 6.41                |                        |                        | 5.18              | 5.63                 | 6.00             |                     | +0.20/+1.10 |
| 10 × 500                     | 7.89                | 8.34                   | 8.34                   | 6.38              | 6.94                 | 7.38             | 8.34                |             |
| 10 × 1,000 <sup>*</sup>      | 15.55               |                        |                        |                   |                      |                  |                     |             |
| 12 × 500                     | 9.55                | 10.10                  | 10.10                  | 7.73              | 8.40                 | 8.94             | 10.10               | +0.30/+1.50 |
| 12 × 1,000*                  | 18.83               |                        |                        | 15.23             |                      |                  |                     |             |
| 15 × 500                     | 11.78               | 12.44                  | 12.44                  |                   |                      | 11.02            | 12.44               |             |
| 15 × 1,000*                  | 23.21               |                        |                        |                   |                      |                  |                     |             |
| 16 × 500                     | 12.52               | 13.23                  | 13.23                  | 10.12             | 11.01                | 11.72            | 13.23               |             |
| 16 × 1,000*                  | 24.67               |                        |                        | 19.95             |                      |                  |                     |             |
| 18 × 500                     | 14.00               | 14.79                  | 14.79                  | 11.32             | 12.31                | 13.11            | 14.79               |             |
| 18 × 1,000*                  | 27.6                |                        |                        | 22.31             |                      |                  |                     |             |
| 20 × 500                     | 15.48               | 16.36                  | 16.36                  | 12.52             | 13.61                | 14.49            | 16.36               |             |
| 20 × 1,000*                  | 30.5                |                        |                        | 24.67             |                      |                  |                     |             |
| 22 × 500                     | 16.96               | 17.92                  | 17.92                  | 13.71             | 14.92                | 15.88            | 17.92               |             |
| 22 × 1,000*                  | 33.4                |                        |                        | 27.0              |                      |                  |                     |             |
| 25 × 500                     | 19.18               | 20.27                  | 20.27                  | 15.51             | 16.87                | 17.96            | 20.27               |             |
| 25 × 1,000                   | 37.8                |                        |                        | 30.6              |                      |                  |                     |             |
| 30 × 500                     | 23.33               | 24.65                  | 24.65                  | 18.86             | 20.52                | 21.84            | 24.65               | +0.50/+2.50 |
| 30 × 1,000                   | 46.0                | 20.5                   | 20.5                   | 37.2              |                      |                  |                     |             |
| 35 × 500                     | 27.0                | 28.6                   | 28.6                   | 21.86             | 23./8                | 25.3             | 28.6                |             |
| 35×1,000                     | 53.3                |                        |                        | 43.1              |                      |                  |                     |             |
| 40 × 500                     | 30.7                | 32.5                   | 32.5                   | 24.85             | 27.0                 | 28.8             | 32.5                |             |
| 40×1,000                     | 60.6                | 26.4                   | 26.4                   | 49.0              |                      |                  |                     |             |
| 45 × 500                     | 34.4                | 36.4                   | 36.4                   | 27.8              | 30.3                 | 32.2             |                     |             |
| 45 × 1,000                   | 67.9                | 40.2                   | 40.2                   | 54.9              | 22.5                 | 25.7             |                     |             |
| 50 × 500                     | 38.1                | 40.3                   | 40.3                   | 30.8              | 33.5                 | 35.7             |                     |             |
| 50 × 1,000                   | /5.2                | 40 5                   | 40 5                   | 60.8              | 40.4                 | 42.0             |                     | 0.50/ 3.50  |
| 60 × 500                     | 45.9                | 48.5                   | 48.5                   | 37.1              | 40.4                 | 43.0             |                     | +0.50/+3.50 |
| 50 × 1,000                   | 90.5                | FC 4                   | 5C 4                   | /3.2              | 46.0                 | 40.0             |                     |             |
| 70 × 500                     | 53.3                | 56.4                   | 56.4                   | 43.1              | 46.9                 | 49.9             |                     |             |
| /U×1,000                     | 105.1               | 64.0                   | CA 0                   | 40 C              | ED 0                 | E7 /             |                     |             |
| 00 × 500                     | 120.0               | 04.8                   | b4.ŏ                   | 45.0              | 53.9                 | 57.4             |                     | +0.50/+5.00 |
| 80 × 1,000                   | 120.8               |                        |                        |                   | CO 1                 |                  |                     |             |
| 00 × 00                      | ر ۵۵./<br>م ۸ م     |                        |                        | 55.5<br>60 F      | 60.4                 |                  |                     |             |
| 3U × 62U                     | 84./                |                        |                        | b8.5              |                      |                  |                     |             |
| 30 × 1,000                   | 135.4               |                        |                        | C1 F              | <u> </u>             |                  |                     |             |
| 100 × 500                    | /b.l                |                        |                        | 61.5              | ьь.9                 |                  |                     |             |
| 100 × 1,000                  | 150.0               |                        |                        |                   |                      |                  |                     |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000 mm

\* Stock length: 2,000 mm



Stock item special production

Modifications in colour and diameter on request. Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com





## Medical technology

Ensinger develops and engineers stock shapes, components and profiles made of thermoplastics which are designed to comply with the stringent demands of medical technology. The special demands imposed on these materials such as physiological safety are addressed by the outstanding properties of high temperature plastics:

- → Examination of the semi-finished product for biocompatibility
- $\rightarrow$  Very good resistance to cleaning agents and disinfectants
- → Resistance against common sterilization methods such as hot steam, hot air, ethylene oxide or gamma radiation
- $\rightarrow$  Compliance examination of the used processing agents
- $\rightarrow$  Attentive storage and shipment with shrink packing

It is the combination of these MT-portfolio attributes that allows this type of high-quality medical products to be used intensively over long periods.

## Ensinger quality in the world of medical technology

In the field of medical technology particularly, the demands made on quality, product documentation and product approvals are extremely stringent. Ensinger is certified in accordance with the quality standards set out in DIN EN ISO 13485 in the fields of compounding, stock shape and industrial profile production, as well as injection moulding and machining. Ensinger consequently fulfils a special duty of care when it comes to traceability.

For our customers, using pre-tested semi-finished products simplifies the process of obtaining approvals for their own medical technology products. Therefore all semi-finished stock items of the MT-portfolio have been tested for biocompatibility according to ISO 10993. The issued biocompatibility is order-related and includes not only the raw material conformity but as well the examination results of the semi-finished product according to ISO 10993. With the order-related issuing we ensure a seamless traceability from the customers order to the semi-finished product and the used raw material. Products suitable for direct contact with blood or tissue

#### TECAPEEK MT CLASSIX white (PEEK)

Tissue contact for up to 30 days. Extension of up to 180 days possible. Seamless cytotoxicity testing from the raw material to the stock shape.

#### **TECAPEEK MT coloured** (PEEK)

Very good resistance to chemicals and sterilization. High radiation resistance. Available in a variety of colours.

## TECAPEEK MT XRO

coloured (PEEK) Same properties as TECAPEEK MT. Contrast medium allows visibility under X-ray fluoroscopy and radiation.

#### **TECAPEEK MT CF30 black** (PEEK CF)

Very good resistance to chemicals and sterilization. High radiation resistance.

#### TECATEC PEEK MT CW50 black (PEEK) Unusually high strength and rigidity.

TECATEC PEKK MT CW60 black (PEKK) Unusually high strength and rigidity.

## TECASON P MT coloured (PPSU)

High strength, hardness and rigidity. Excellent thermal dimensional stability. Autoclavable. Available in a variety of colours.

## TECASON P MT XRO coloured

(PPSU, contrast medium) Same properties as TECASON P MT. Contrast agent permits visibility under X-ray illumination and radiation.

## **TECAPEI MT coloured** (PEI)

Very good mechanical and electrical properties. Available in a variety of colours.

## TECANAT MT natural

(PC) Highly tough material. Its transparency facilitates optical control.

#### TECAFORM AH MT coloured (POM-C) Very good sliding and abrasion behaviour. Resistant to organic solvents. Available in a variety of colours.

**TECANYL MT coloured** (PPE) High impact strength.

Low density. Available in a variety of colours.

(PP) Sterilization resistant and dimensionally stable. Good machining properties.

Products for no direct contact with blood or tissue

TECAPRO AM natural (PP) Minimal moisture absorption. Antimicrobial property.

**TECASON P VF** (*PPSU*) → p. 42

**TECAPEEK VF natural** (PEEK) → p. 88

#### Application examples

#### Spring in support orthosis TECAPEEK MT natural (PEEK) High flexibility. Good strength. Easy formability. Light weight and "warm" to the touch.



#### **Storage container** TECAPRO MT white / black

(PP) High strength. Sterilization resistant. Minimal weight.



Dental healing cap

TECAPEEK MT CLASSIX white (PEEK) Temporary implant. Tissue contact for up to 30 days.



Knee cap trial implant TECASON P MT green (PPSU) Resistant to steam sterilisation. Biocompatible.



PercuTwist dilator for tracheotomy

*for tracheotomy TECAPEEK MT blue* (*PEEK*) Good chemical resistance. Very good resistance to sterilization. High precision for a sharp-edged, burr-free thread.



Stock shapes for applications in medical technology are welded into a transparent film to protect the material from contamination and ingress of dirt.



71

## MEDICAL TECHNOLOGY Rods

|                 | TECAPEEK<br>MT natural | TECAPEEK<br>MT black | TECAPEEK<br>MT blue | TECAPEEK<br>MT green | TECAPEEK<br>MT yellow  | TECAPEEK<br>MT ivory | TECAPEEK<br>MT grey |              |
|-----------------|------------------------|----------------------|---------------------|----------------------|------------------------|----------------------|---------------------|--------------|
| Polymer         | PEEK                   | PEEK                 | PEEK                | PEEK                 | PEEK                   | PEEK                 | PEEK                |              |
| Density [g/cm³] | 1.31                   | 1.31                 | 1.34                | 1.32                 | 1.38                   | 1.42                 | 1.32                |              |
| Colour          | beige<br>opaque        | black<br>opaque      | blue<br>opaque      | green<br>opaque      | light yellow<br>opaque | ivory<br>opaque      | grey<br>opaque      | T-           |
| Diameter [mm]   | [ka/m]                 | [ka/m]               | [ka/m]              | [ka/m]               | [ka/m]                 | [ka/m]               | [ka/m]              | Iolerance    |
| 5               | 0.030                  | 0 030                | [Kg/11]             | [Kg/11]              | [Kg/11]                | [Kg/III]             | [Kg/111]            | +0 10/+0 60  |
| 6               | 0.050                  | 0.050                |                     |                      |                        |                      |                     | 10.10, 10.00 |
| 8               | 0.074                  | 0.074                | 0.076               | 0.075                | 0.078                  | 0.080                | 0.075               | +0.10/+0.70  |
| 10              | 0.114                  | 0.114                | 0.116               | 0.114                | 0.120                  | 0.123                | 0.114               | 10.10, 10.70 |
| 12              | 0.164                  | 0.164                | 0.168               | 0.165                | 0.173                  | 0.178                | 0.165               | +0.20/+0.80  |
| 15              | 0.252                  | 0.252                | 0.258               | 0.254                | 0.266                  | 0.273                | 0.254               |              |
| 16              | 0.286                  | 0.286                | 0.292               | 0.288                | 0.301                  | 0.310                | 0.288               |              |
| 18              | 0.359                  | 0.359                | 0.367               | 0.362                | 0.378                  | 0.389                | 0.362               |              |
| 20              | 0.441                  | 0.441                | 0.451               | 0.444                | 0.465                  | 0.478                | 0.444               |              |
| 22              | 0.536                  | 0.536                | 0.548               | 0.540                | 0.565                  | 0.581                | 0.540               | +0.20/+1.00  |
| 25              | 0.688                  | 0.688                | 0.704               | 0.693                | 0.725                  | 0.746                | 0.693               |              |
| 28              | 0.858                  | 0.858                | 0.878               | 0.865                | 0.904                  | 0.930                | 0.865               |              |
| 30              | 0.983                  | 0.983                | 1.01                | 0.990                | 1.04                   | 1.07                 | 0.990               |              |
| 32              | 1.12                   | 1.12                 | 1.15                | 1.13                 | 1.18                   | 1.22                 | 1.13                | +0.20/+1.20  |
| 36              | 1.41                   | 1.41                 | 1.45                | 1.42                 | 1.49                   | 1.53                 | 1.42                |              |
| 40              | 1.74                   | 1.74                 | 1.78                | 1.75                 | 1.83                   | 1.88                 | 1.75                |              |
| 45              | 2.20                   | 2.20                 | 2.25                | 2.22                 | 2.32                   | 2.39                 | 2.22                | +0.30/+1.30  |
| 50              | 2.71                   | 2.71                 | 2.77                | 2.73                 | 2.85                   | 2.94                 | 2.73                |              |
| 56              | 3.39                   | 3.39                 | 3.46                | 3.41                 | 3.57                   | 3.67                 | 3.41                |              |
| 60              | 3.90                   | 3.90                 | 3.99                | 3.93                 | 4.11                   | 4.23                 | 3.93                | +0.30/+1.60  |
| 65              | 4.56                   | 4.56                 | 4.67                | 4.60                 | 4.81                   | 4.95                 | 4.60                |              |
| 70              | 5.28                   | 5.28                 | 5.40                | 5.32                 | 5.57                   | 5.73                 | 5.32                |              |
| 80              | 6.92                   | 6.92                 | 7.08                | 6.97                 | 7.29                   | 7.50                 | 6.97                | +0.40/+2.00  |
| 90              | 8.76                   | 8.76                 |                     |                      |                        |                      |                     | +0.50/+2.20  |
| 100             | 10.82                  | 10.82                |                     |                      |                        |                      |                     | +0.60/+2.50  |
| 110             | 13.13                  |                      |                     |                      |                        |                      |                     | +0.70/+3.00  |
| 120             | 15.66                  |                      |                     |                      |                        |                      |                     | +0.80/+3.50  |
| 150             | 24.44                  |                      |                     |                      |                        |                      |                     | +1.00/+4.20  |
| 160             | 27.8                   |                      |                     |                      |                        |                      |                     | +1.10/+4.50  |
| 180*            | 35.2                   |                      |                     |                      |                        |                      |                     | +1.20/+5.00  |
| 200*            | 43.4                   |                      |                     |                      |                        |                      |                     | +1.30/+5.50  |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm \* Stock length: 1,000 mm

Special materials

**Modifications in colour and diameter on request.** Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com
#### MEDICAL TECHNOLOGY Rods

| 0               | TECAPEEK<br>MT CF30<br>black |             |
|-----------------|------------------------------|-------------|
| Polymer         | PEEK                         |             |
| Density [g/cm³] | 1.42                         |             |
| Colour          | black<br>opaque              |             |
|                 |                              | Tolerance   |
| Diameter [mm]   | [kg/m]                       | [mm]        |
| 10              | 0.124                        | +0.10/+0.80 |
| 12              | 0.179                        | +0.20/+0.90 |
| 15              | 0.275                        |             |
| 16              | 0.312                        |             |
| 18              | 0.391                        |             |
| 20              | 0.480                        |             |
| 22              | 0.586                        | +0.20/+1.20 |
| 25              | 0.751                        |             |
| 28              | 0.937                        |             |
| 30              | 1.07                         |             |
| 32              | 1.22                         |             |
| 36              | 1.55                         | +0.20/+1.60 |
| 40              | 1.90                         |             |
| 45              | 2.42                         | +0.30/+2.00 |
| 50              | 2.98                         |             |

#### MEDICAL TECHNOLOGY Rods

| 6               | TECAPEEK<br>MT CLASSIX<br>white |             |
|-----------------|---------------------------------|-------------|
| Polymer         | PEEK                            |             |
| Density [g/cm³] | 1.40                            |             |
| Colour          | cream white<br>opaque           |             |
|                 |                                 | Tolerance   |
| Diameter [mm]   | [kg/m]                          | [mm]        |
| 6               | 0.040                           | -0.03/+0.00 |
| 8               | 0.071                           | -0.04/+0.00 |
| 10              | 0.112                           |             |
| 20              | 0.447                           | -0.05/+0.00 |
| 30              | 1.01                            |             |
| 40              | 1.86                            | +0.20/+1.20 |
| 45              | 2.35                            | +0.30/+1.30 |
|                 |                                 |             |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm Surface ground





Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm

#### MEDICAL TECHNOLOGY Rods

| 6               | TECANAT<br>MT natural |          |
|-----------------|-----------------------|----------|
| Polymer         | PC                    |          |
| Density [g/cm³] | 1.19                  |          |
| Colour          | white<br>transparent  |          |
|                 |                       | Toleranc |

| Diameter [mm] | [kg/m] | [mm]        |
|---------------|--------|-------------|
| 10            | 0.104  | +0.10/+0.80 |
| 20            | 0.403  | +0.20/+0.90 |
| 30            | 0.898  | +0.20/+1.20 |
| 40            | 1.59   | +0.20/+1.60 |
| 50            | 2.49   | +0.30/+2.00 |
| 60            | 3.59   | +0.30/+2.50 |
| 70            | 4.86   |             |
| 80            | 6.36   | +0.40/+3.00 |
| 90            | 8.06   | +0.50/+3.40 |
| 100           | 9.96   | +0.60/+3.80 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm



Stock item
Non-stock item special production Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

#### MEDICAL TECHNOLOGY Rods

|                 | TECASON<br>P MT black | TECASON<br>P MT blue | TECASON<br>P MT green | TECASON<br>P MT red | TECASON<br>P MT yellow | TECASON<br>P MT ivory | TECASON<br>P MT grey |             |
|-----------------|-----------------------|----------------------|-----------------------|---------------------|------------------------|-----------------------|----------------------|-------------|
| Polymer         | PPSU                  | PPSU                 | PPSU                  | PPSU                | PPSU                   | PPSU                  | PPSU                 |             |
| Density [g/cm³] | 1.31                  | 1.31                 | 1.31                  | 1.31                | 1.31                   | 1.31                  | 1.31                 |             |
| Colour          | black<br>opaque       | blue<br>opaque       | green<br>opaque       | red<br>opaque       | yellow<br>opaque       | ivory<br>opaque       | grey<br>opaque       |             |
|                 |                       |                      |                       |                     |                        |                       |                      | Tolerance   |
| Diameter [mm]   | [kg/m]                | [kg/m]               | [kg/m]                | [kg/m]              | [kg/m]                 | [kg/m]                | [kg/m]               | [mm]        |
| 19.05           | 0.403                 | 0.401                | 0.403                 | 0.403               | 0.403                  | 0.403                 | 0.403                | +0.20/+0.90 |
| 25.4            | 0.715                 | 0.715                | 0.715                 | 0.715               | 0.715                  | 0.715                 | 0.715                | +0.20/+1.20 |
| 31.75           | 1.11                  | 1.11                 | 1.11                  | 1.11                | 1.11                   | 1.11                  | 1.11                 |             |
| 38.1            | 1.60                  | 1.60                 | 1.60                  | 1.60                | 1.60                   | 1.60                  | 1.60                 | +0.20/+1.60 |
| 44.45           | 2.18                  | 2.18                 | 2.18                  | 2.18                | 2.18                   | 2.18                  | 2.18                 | +0.30/+2.00 |
| 50.8            | 2.83                  | 2.83                 | 2.83                  | 2.83                | 2.83                   | 2.85                  | 2.83                 |             |
| 57.15           | 3.60                  | 3.60                 | 3.60                  | 3.60                | 3.60                   | 3.60                  | 3.60                 | +0.30/+2.50 |
| 63.5            | 4.49                  | 4.42                 | 4.42                  | 4.42                | 4.42                   | 4.42                  | 4.42                 |             |
| 69.85           | 5.33                  | 5.35                 | 5.35                  | 5.33                | 5.33                   | 5.33*                 | 5.33                 |             |
| 76.2            | 6.34                  | 6.37                 | 6.37                  | 6.37                | 6.37                   | 6.37*                 | 6.37                 | +0.40/+3.00 |
| 88.9            | 8.66                  | 8.66                 | 8.66                  | 8.66                | 8.66                   | 8.66                  | 8.66                 | +0.50/+3.40 |
|                 |                       |                      |                       |                     |                        |                       |                      |             |

Tolerances according to DIN: Length 0/+3% Stock lengths: 3,000 mm \* Stock length: 2,440 mm

MEDICAL TECHNOLOGY Rods

| 0               | TECASON<br>P MT XRO<br>black | TECASON<br>P MT XRO<br>blue | TECASON<br>P MT XRO<br>green | TECASON<br>P MT XRO<br>red | TECASON<br>P MT XRO<br>yellow | TECASON<br>P MT XRO<br>ivory | TECASON<br>P MT XRO<br>brown |             |
|-----------------|------------------------------|-----------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|------------------------------|-------------|
| Polymer         | PPSU                         | PPSU                        | PPSU                         | PPSU                       | PPSU                          | PPSU                         | PPSU                         |             |
| Density [g/cm³] | 1.36                         | 1.36                        | 1.36                         | 1.36                       | 1.36                          | 1.36                         | 1.36                         |             |
| Colour          | black<br>onaque              | blue<br>opaque              | green<br>opaque              | red<br>opaque              | yellow                        | ivory<br>opaque              | brown<br>opaque              |             |
|                 |                              |                             |                              |                            |                               |                              |                              | Tolerance   |
| Diameter [mm]   | [kg/m]                       | [kg/m]                      | [kg/m]                       | [kg/m]                     | [kg/m]                        | [kg/m]                       | [kg/m]                       | [mm]        |
| 25.40           | 0.710                        | 0.710                       | 0.710                        | 0.710                      | 0.710                         | 0.710                        | 0.710                        | +0.00/+0.05 |
| 38.10           | 1.60                         | 1.60                        | 1.60                         | 1.60                       | 1.60                          | 1.60                         | 1.60                         | +0.00/+0.13 |
| 50.80           | 2.83                         | 2.83                        | 2.83                         | 2.83                       | 2.83                          | 2.83                         | 2.83                         |             |
| 63.50           | 4.42                         | 4.42                        | 4.42                         | 4.42                       | 4.42                          | 4.42                         | 4.42                         | +0.00/+0.76 |

Tolerances according to DIN: Length 0/+3% Stock lengths: 2,440 mm

Stock item Non-stock item – special production **Modifications in colour and diameter on request.** Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

#### MEDICAL TECHNOLOGY Rods

|             | TECAFORM<br>AH MT rust<br>red | TECAFORM<br>AH MT<br>brown | TECAFORM<br>AH MT grey | TECAFORM<br>AH MT<br>yellow | TECAFORM<br>AH MT red | TECAFORM<br>AH MT<br>green | TECAFORM<br>AH MT blue | TECAFORM<br>AH MT<br>black | 6               |
|-------------|-------------------------------|----------------------------|------------------------|-----------------------------|-----------------------|----------------------------|------------------------|----------------------------|-----------------|
|             | POM-C                         | POM-C                      | POM-C                  | POM-C                       | POM-C                 | POM-C                      | POM-C                  | POM-C                      | Polymer         |
|             | 1.41                          | 1.41                       | 1.41                   | 1.41                        | 1.41                  | 1.41                       | 1.41                   | 1.41                       | Density [g/cm³] |
|             | rustred<br>opaque             | brown<br>opaque            | grey<br>opaque         | yellow<br>opaque            | red<br>opaque         | green<br>opaque            | blue<br>opaque         | black<br>opaque            | Colour          |
| Tolerance   |                               |                            |                        |                             |                       |                            |                        |                            |                 |
| [mm]        | [kg/m]                        | [kg/m]                     | [kg/m]                 | [kg/m]                      | [kg/m]                | [kg/m]                     | [kg/m]                 | [kg/m]                     | Diameter [mm]   |
| +0.00/+0.05 | 0.732                         | 0.732                      | 0.732                  | 0.732                       | 0.732                 | 0.732                      | 0.732                  | 0.732                      | 25.4            |
| +0.00/+0.13 | 1.65                          | 1.65                       | 1.65                   | 1.65                        | 1.65                  | 1.65                       | 1.65                   | 1.65                       | 38.1            |
|             | 2.92                          | 2.92                       | 2.92                   | 2.92                        | 2.92                  | 2.92                       | 2.92                   | 2.92                       | 50.8            |
| +0.00/+0.76 | 4.61                          | 4.61                       | 4.61                   | 4.61                        | 4.61                  | 4.61                       | 4.61                   | 4.61                       | 63.5            |
|             | 6.62                          | 6.62                       | 6.62                   | 6.62                        | 6.62                  | 6.62                       | 6.62                   | 6.62                       | 76.2            |
|             | 9.00                          | 9.00                       | 9.00                   | 9.00                        | 9.00                  | 9.00                       | 9.00                   | 9.00                       | 88.9            |

Tolerances according to DIN: Length 0/+3% Stock lengths: 2,440 mm

#### MEDICAL TECHNOLOGY Rods

| 6               | TECANYL<br>MT black | TECANYL<br>MT blue | TECANYL<br>MT green | TECANYL<br>MT yellow | TECANYL<br>MT grey | TECANYL<br>MT brown |             |
|-----------------|---------------------|--------------------|---------------------|----------------------|--------------------|---------------------|-------------|
| Polymer         | PPE                 | PPE                | PPE                 | PPE                  | PPE                | PPE                 |             |
| Density [g/cm³] | 1.05                | 1.08               | 1.09                | 1.05                 | 1.10               | 1.08                |             |
| Colour          | black<br>opaque     | blue<br>opaque     | green<br>opaque     | yellow<br>opaque     | grey<br>opaque     | red brown<br>opaque |             |
|                 |                     |                    |                     |                      |                    |                     | Tolerance   |
| Diameter [mm]   | [kg/m]              | [kg/m]             | [kg/m]              | [kg/m]               | [kg/m]             | [kg/m]              | [mm]        |
| 25.40           | 0.573               | 0.589              | 0.595               | 0.573                | 0.600              | 0.589               | +0.00/+0.05 |
| 38.10           | 1.28                | 1.32               | 1.33                | 1.28                 | 1.27               | 1.32                | +0.00/+0.13 |
| 50.80           | 2.27                | 2.33               | 2.36                | 2.27                 | 2.38               | 2.33                |             |
| 63.50           | 3.54                | 3.64               | 3.68                | 3.54                 | 3.71               | 3.64                | +0.00/+0.76 |
| 88.90           | 6.94                | 7.14               | 7.21                | 6.94                 | 7.27               | 7.14                |             |

Tolerances according to DIN: Length 0/+3% Stock lengths: 2,440 mm



Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

75

Special materials

#### **MEDICAL TECHNOLOGY Plates**

|                 | TECAPEEK<br>MT natural | TECAPEEK<br>MT black | TECAPEEK<br>MT blue | TECAPEEK<br>MT green | TECAPEEK<br>MT yellow  | TECAPEEK<br>MT ivory | TECAPEEK<br>MT grey | TECAPEEK<br>MT CF30<br>black |             |
|-----------------|------------------------|----------------------|---------------------|----------------------|------------------------|----------------------|---------------------|------------------------------|-------------|
| Polymer         | PEEK                   | PEEK                 | PEEK                | PEEK                 | PEEK                   | PEEK                 | PEEK                | PEEK                         |             |
| Density [g/cm³] | 1.31                   | 1.31                 | 1.34                | 1.32                 | 1.38                   | 1.42                 | 1.32                | 1.42                         |             |
| Colour          | beige<br>opaque        | black<br>opaque      | blue<br>opaque      | green<br>opaque      | light yellow<br>opaque | ivory<br>opaque      | grey<br>opaque      | black<br>opaque              |             |
|                 |                        |                      |                     |                      |                        |                      |                     |                              | Tolerance   |
| Dimensions [mm] | [kg/m]                 | [kg/m]               | [kg/m]              | [kg/m]               | [kg/m]                 | [kg/m]               | [kg/m]              | [kg/m]                       | [mm]        |
| 5 × 500         | 3.75                   | 3.75                 | 3.84                | 3.78                 | 3.95                   | 4.07                 | 3.78                |                              | +0.20/+0.70 |
| 10 × 500        | 7.33                   | 7.33                 | 7.50                | 7.38                 | 7.72                   | 7.94                 | 7.38                | 7.94                         | +0.20/+1.10 |
| 20 × 500        | 14.38                  | 14.38                | 14.71               | 14.49                | 15.15                  | 15.59                | 14.49               | 15.59                        | +0.30/+1.50 |
| 25 × 500        | 17.82                  | 17.82                | 18.23               | 17.96                | 18.78                  | 19.32                | 17.96               | 19.32                        |             |
| 30 × 500        | 21.68                  | 21.68                | 22.17               | 21.84                | 22.83                  | 23.50                | 21.84               | 23.50                        | +0.50/+2.50 |
| 40 × 500        | 28.6                   | 28.6                 | 29.2                | 28.8                 | 30.1                   | 31.0                 | 28.8                | 31.0                         |             |
| 50 × 500        | 35.4                   | 35.4                 | 36.3                | 35.7                 | 37.3                   | 38.4                 | 35.7                | 38.4                         |             |
| 60 × 500        | 42.7                   | 42.7                 |                     |                      |                        |                      |                     | -                            | +0.50/+3.50 |
| 70 × 300        | 30.3                   |                      |                     |                      |                        |                      |                     |                              |             |
| 80 × 300        | 34.8                   |                      |                     |                      |                        |                      |                     |                              | +0.50/+5.00 |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000mm

#### MEDICAL TECHNOLOGY Plates

|                 | TECASON<br>P MT black | TECASON<br>P MT blue | TECASON<br>P MT green | TECASON<br>P MT red | TECASON<br>P MT yellow | TECASON<br>P MT ivory | TECASON<br>P MT grey |             |
|-----------------|-----------------------|----------------------|-----------------------|---------------------|------------------------|-----------------------|----------------------|-------------|
| Polymer         | PPSU                  | PPSU                 | PPSU                  | PPSU                | PPSU                   | PPSU                  | PPSU                 |             |
| Density [g/cm³] | 1.31                  | 1.31                 | 1.31                  | 1.31                | 1.31                   | 1.31                  | 1.31                 |             |
| Colour          | black<br>opaque       | blue<br>opaque       | green<br>opaque       | red<br>opaque       | yellow<br>opaque       | ivory<br>opaque       | grey<br>opaque       |             |
|                 |                       |                      |                       |                     |                        |                       |                      | Tolerance   |
| Dimensions [mm] | [kg/m]                | [kg/m]               | [kg/m]                | [kg/m]              | [kg/m]                 | [kg/m]                | [kg/m]               | [mm]        |
| 5 × 500         | 3.75                  | 3.75                 | 3.75                  | 3.75                | 3.75                   | 3.75                  | 3.75                 | +0.20/+0.70 |
| 10 × 500        | 7.33                  | 7.33                 | 7.33                  | 7.33                | 7.33                   | 7.33                  | 7.33                 | +0.20/+1.10 |
| 20 × 500        | 14.38                 | 14.38                | 14.38                 | 14.38               | 14.38                  | 14.38                 | 14.38                | +0.30/+1.50 |
| 25 × 500        | 17.82                 | 17.82                | 17.82                 | 17.82               | 17.82                  | 17.82                 | 17.82                |             |
| 30 × 500        | 21.68                 | 21.68                | 21.68                 | 21.68               | 21.68                  | 21.68                 | 21.68                | +0.50/+2.50 |
| 40 × 500        | 28.6                  | 28.6                 | 28.6                  | 28.6                | 28.6                   | 28.6                  | 28.6                 |             |
| 50 × 500        | 35.4                  | 35.4                 | 35.4                  | 35.4                | 35.4                   | 35.4                  | 35.4                 |             |
| 60 × 500        | 42.7                  | 42.7                 | 42.7                  | 42.7                | 42.7                   | 42.7                  | 42.7                 | +0.50/+3.50 |
| 70 × 300        | 30.3                  | 30.3                 | 30.3                  | 30.3                | 30.3                   | 30.3                  | 30.3                 |             |
| 80 × 300        | 34.8                  | 34.8                 | 34.8                  | 34.8                | 34.8                   | 34.8                  | 34.8                 | +0.50/+5.00 |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000mm

Stock item Non-stock item – special production **Modifications in colour and diameter on request.** Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

#### MEDICAL TECHNOLOGY Plates

|                 | TECAFORM<br>AH MT black | TECAFORM<br>AH MT blue | TECAFORM<br>AH MT green | TECAFORM<br>AH MT red | TECAFORM<br>AH MT yellow | TECAPRO<br>MT white | TECAPRO<br>MT black |             |
|-----------------|-------------------------|------------------------|-------------------------|-----------------------|--------------------------|---------------------|---------------------|-------------|
| Polymer         | POM-C                   | POM-C                  | POM-C                   | POM-C                 | POM-C                    | PP                  | PP                  |             |
| Density [g/cm³] | 1.41                    | 1.41                   | 1.41                    | 1.41                  | 1.41                     | 0.93                | 0.92                |             |
| Colour          | black<br>opaque         | blue<br>opaque         | green<br>opaque         | red<br>opaque         | yellow<br>opaque         | white<br>opaque     | black<br>opaque     |             |
|                 |                         |                        |                         |                       |                          |                     |                     | Tolerance   |
| Dimensions [mm] | [kg/m]                  | [kg/m]                 | [kg/m]                  | [kg/m]                | [kg/m]                   | [kg/m]              | [kg/m]              | [mm]        |
| 12.7 × 610      | 11.31                   | 11.31                  | 11.31                   | 11.31                 | 11.31                    | 7.52                | 7.44                | +0.00/+0.64 |
| 25.4 × 610      | 22.34                   | 22.34                  | 22.34                   | 22.34                 | 22.34                    | 14.85               | 14.69               |             |
| 38.1 × 610      | 33.4                    | 33.4                   | 33.4                    | 33.4                  | 33.4                     | 22.19               | 21.95               |             |
| 50.8 × 610      | 44.4                    | 44.4                   | 44.4                    | 44.4                  | 44.4                     | 29.5                | 29.2                |             |
| 63.5 × 610      | 55.5                    | 55.5                   | 55.5                    | 55.5                  | 55.5                     | 36.9                | 36.5                |             |

Tolerances according to DIN: Length 0/+12.7 mm Width 0/+6.35 mm Stock lengths: 1,220 mm





**Modifications in colour and diameter on request.** Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com

#### MEDICAL TECHNOLOGY Plates

|                 | TECANAT<br>MT natural |             |
|-----------------|-----------------------|-------------|
| Polymer         | PC                    |             |
| Density [g/cm³] | 1.19                  |             |
| Colour          | white<br>transparent  |             |
|                 |                       | Tolerance   |
| Dimensions [mm] | [kg/m]                | [mm]        |
| 10 × 500        | 6.66                  | +0.20/+1.10 |
| 20 × 500        | 13.06                 | +0.30/+1.50 |
| 30 × 500        | 19.69                 | +0.50/+2.50 |
| 40 × 500        | 25.9                  |             |
| 50 × 500        | 32.2                  |             |
| 60 × 500        | 38.8                  | +0.50/+3.50 |
| 70 × 500        | 45.0                  |             |
| 80 × 500        | 51.7                  | +0.50/+5.00 |
| 90 × 500        | 58.0                  |             |
| 100 × 500       | 64.2                  |             |

Tolerances according to DIN: Length 0/+3% Width +5/+25mm Stock lengths: 3,000mm

#### MEDICAL TECHNOLOGY Plates

|                 | TECAPRO<br>AM natural |             |
|-----------------|-----------------------|-------------|
| Polymer         | PP                    |             |
| Density [g/cm³] | 0.93                  |             |
| Colour          | white                 |             |
|                 | opaque                |             |
|                 |                       | Tolerance   |
| Dimensions [mm] | [kg/m]                | [mm]        |
| 12.7 × 610      | 7.44                  | +0.00/+0.64 |
| 25.4 × 610      | 14.66                 |             |
| 38.1 × 610      | 21.95                 |             |
| 50.8 × 610      | 29.2                  |             |
| 63.5 × 610      | 36.5                  |             |

Tolerances according to DIN: Length 0/+12.7mm Width 0/+6.35mm Stock lengths: 1,220mm

Stock item Non-stock item – special production **Modifications in colour and diameter on request.** Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com





# Semiconductor technology

In semiconductor technology, chemical-resistant, wearresistant, and versatile-use systems have been used in different processing steps and testing of semiconductor products for many years. Their success is based on a combination of material benefits which are brought to bear even under harsh chemical or different temperature level conditions. Moreover the trend to even smaller and more powerful integrated circuits (ICs) raises new challenges to the entire production chain, from cutting the raw wafer to the final testing stage, which can be met by the deployment of technical plastics.

In the process of semiconductor production, technical plastics can be used in a wide range of applications. The special demands imposed upon these materials are addressed by the outstanding properties of high performance plastics:

- $\rightarrow$  High thermo-mechanical strength
- $\rightarrow$  Minimal thermal expansion
- $\rightarrow$  Good wear resistance
- → Good chemical resistance to acids, alkalis, greases and solvents, hydrogen peroxide, demineralised water, hot steam
- $\rightarrow$  Good plasma resistance
- $\rightarrow$  Minimal out-gassing under vacuum
- $\rightarrow$  Minimal foreign ion content
- → Good electrical insulating properties, or respectively a defined degree of conductivity

To make sure that we permanently meet all the relevant demands of the industry, we have set up a special range of semiconductor products with stock items or short-term availability. Some of these products are produced in clean rooms. The dimensions and tolerances we offer for the tubes intended for the production of CMP rings are also not according to the general industry standards, but adapted according to the special demands towards closer finished ring sizes of the semiconductor industry.

Additionally, Ensinger can provide full documentation and traceability on all materials. This is done by process control which is well proven in other sensitive industries and across all manufacturing types such as compounding, stock shapes and component production through injection moulding and machining.

Ensinger is certified in accordance with ISO 9001:2008 and has a quality management system follows international standards, implements them and anchors them permanently in procedures.

#### Application examples

#### Retaining ring

TECATRON CMP natural (PPS) High wear resistance. Improved toughness and machinability. High dimensional stability.

#### Support comb

TECAPEEK GF30 natural (PEEK GF) High degree of toughness. High dimensional stability. Good chemical resistance. Electrically insulating.

#### Contact plate

TECAPEEK CMF white (PEEK, ceramic) Dimensionally stable. Excellent hardness and rigidity. Good electrical insulation. High abrasion resistance.



#### Workpiece holder

TECAPEEK CMF white (PEEK, ceramic) High dimensional stability. Excellent hardness and rigidity. Good electrical insulation. High abrasion resistance.



Snap Contact TECATRON GF40 black (PPS GF) Tight tolerances. Fibre reinforced plastic.



Contact frame TECASINT 4051 brown (PI GF) Reduced thermal expansion at high temperatures. Wear resistance. Dimensionally stable. Good machinability.



#### Ensinger materials for semiconductor technology:

Products for CMP applications

#### **TECATRON CMP** natural (PPS)

Higher abrasion and wear resistance compared to TECATRON SE, high toughness, very good chemical resistance, high purity.

#### **TECATRON SE natural** (PPS)

High abrasion and wear resistance, high toughness, very good chemical resistance, high purity.

#### TECAPEEK CMP natural

(PEEK) Higher ductility compared to TECAPEEK SE, excellent chemical resistance. abrasion resistant, high purity.

#### TECAPEEK SE natural (PEEK)

Excellent chemical resistance. abrasion resistant, high purity.

**TECANAT CMP** natural (PC) High abrasion resistance, transparent, high purity.

#### TECADUR PET CMP natural (PET) High strength, good slide and wear properties, good machinability, good chemical resistance, high purity.

Products for further processes in the semiconductor production:

TECASINT 4111/4011/2011 (PI) → p. 57

TECAPEEK (PEEK) → p. 48

**TECAPEEK GF30** (PEEK GF) → p. 48

TECATRON (PPS) → p. 45

**TECATRON GF40** (PPS GF) → p. 45

**TECAFLON PVDF** natural (PVDF) → p. 39

**TECAFLON PTFE natural** (PTFE) → p. 39

TECADUR PET (PET) → p. 32

Products for back-end applications:

TECASINT 5201 SD black (PAI) → p. 57

TECASINT 5051 grey-green (PAI GF) → p. 57

TECASINT 4111 / 4011 natural (PI) → p. 57

TECATOR 5013 natural (PAI) → p. 55

#### TECAPEEK CMF

(PEEK, ceramic) High dimensional stability, lowest moisture absorption, high strength and stiffness.

TECAPEEK TS grey

(PEEK, mineral) Excellent hardness and rigidity, low coefficient of thermal expansion, high dimensional stability.

TECAPEEK ELS nano black (PEEK, CNT) → p. 85

#### TECAPEEK (PEEK)

→ p. 48

TECATRON

(PPS) → p. 45

#### TECAPEI GF30

(PEI GF) → p. 42

#### SEMICONDUCTOR Tubes

| 0                                 | TECATRON<br>CMP natural | TECATRON<br>SE natural | TECAPEEK<br>CMP natural | TECAPEEK<br>SE natural | TECADUR<br>PET CMP<br>natural |                           |                          |
|-----------------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------------|---------------------------|--------------------------|
| Polymer                           | PPS                     | PPS                    | PEEK                    | PEEK                   | PET                           |                           |                          |
| Density [g/cm³]                   | 1.34                    | 1.36                   | 1.31                    | 1.31                   | 1.39                          |                           |                          |
| Colour                            | beige<br>opaque         | beige<br>opaque        | beige<br>opaque         | beige<br>opaque        | white<br>opaque               |                           |                          |
| Diameter<br>outside / inside [mm] | [kg/m]                  | [kg/m]                 | [kg/m]                  | [kg/m]                 | [kg/m]                        | Tolerance<br>outside [mm] | Tolerance<br>inside [mm] |
| 190 / 140                         | 21.50                   | 21.83                  | 21.02                   | 21.02                  | 22.31                         | +1.00/+6.00               | -2.50/-10.00             |
| 190 / 150                         | 18.45                   | 18.73                  | 18.04                   | 18.04                  | 19.14                         | +1.00/+6.00               | -2.50/-10.00             |
| 200 / 125                         | 30.90                   | 31.40                  | 30.20                   | 30.20                  | 32.10                         | +2.00/+9.00               | -2.50/-10.00             |
| 230 / 190                         | 24.62                   | 24.99                  | 24.07                   | 24.07                  | 25.50                         | +3.00/+9.00               | -3.00/-12.00             |
| 230 / 195                         | 22.07                   | 22.40                  | 21.58                   | 21.58                  | 22.90                         | +1.00/+9.00               | -3.00/-12.00             |
| 250 / 200                         | 31.50                   | 31.90                  | 30.80                   | 30.80                  | 32.60                         | +2.00/+9.00               | -3.00/-14.00             |
| 255 / 190                         | 38.00                   | 38.60                  | 37.20                   | 37.20                  | 39.40                         | +2.00/+9.00               | -3.00/-12.00             |
| 255 / 195                         | 36.00                   | 36.50                  | 35.20                   | 35.20                  | 37.30                         | +2.00/+9.00               | -3.00/-12.00             |
| 280 / 210                         | 45.80                   | 46.50                  | 44.80                   | 44.80                  | 47.50                         | +3.00/+12.00              | -3.00/-12.00             |
| 305 / 190                         | 70.80                   | 71.80                  | 69.20                   | 69.20                  | 73.40                         | +3.00/+12.00              | -3.00/-12.00             |
| 305 / 195                         | 67.40                   | 68.40                  | 65.90                   | 65.90                  | 69.90                         | +2.00/+9.00               | -3.00/-12.00             |
| 305 / 200                         | 67.10                   | 68.10                  | 65.60                   | 65.60                  | 69.60                         | +3.00/+12.00              | -3.00/-14.00             |
| 360 / 295                         | 55.60                   | 56.40                  | 54.40                   | 54.40                  | 57.70                         | +1.00/+9.00               | -3.00/-12.00             |

Tolerances: length +30 / +60 mm Stock lengths 1,000 mm

#### SEMICONDUCTOR Tubes

Density [g/cm<sup>3</sup>] 1.34 Colour white transparent

| Diameter<br>outside / inside [mm] | [kg/m] | Tolerance<br>outside [mm] | Tolerance<br>inside [mm] |
|-----------------------------------|--------|---------------------------|--------------------------|
| 230 / 200                         | 18.90  | +5.00/+10.00              | -5.00/-10.00             |
| 255 / 200                         | 31.10  | +3.00/+12.00              | -3.00/-12.00             |
| 360 / 295                         | 49.40  | +1.00/+9.00               | -3.00/-12.00             |

<sup>a</sup> Other diameters on request Tolerances: length +30 / +60 mm Stock lengths 1,000 mm



Modifications in colour and diameter on request. Other delivery lengths possible, also available ground. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com





# Aerospace technology

Technical plastics from Ensinger contribute to making applications more efficient and competitive in many industrial areas. The aerospace industry places high demands on materials. Here, high-performance plastics are expanding due to their low weight, fire behavior and other properties:

- → Weight savings of up 60% compared to aluminium reduce energy consumptions
- → Plastics can be processed better than other materials
- → Greater freedom in component design results in reduced production and installation costs
- $\rightarrow$  Good chemical resistance
- → Inherent flame-resistance: High-performance plastics fulfil the requirements of UL 94 -V0 and meet fire behaviour standards in accordance with FAR 25.853
- → Fire behaviour with regard to: smoke gas density, smoke gas toxicity, heat release
- $\rightarrow$  High specific strength due to fibre-reinforced plastics
- → Convincing gliding properties with outstanding dry-running characteristics and freedom from maintenance in the application
- $\rightarrow$  Low outgassing in vacuum
- $\rightarrow$  Good radiation resistance

The characteristics of our plastics products fulfil the detailed requirements of material specifications of final customers and system suppliers in the aerospace industry. Safety aspects and reduced energy consumption are written large here.

As requested by our customers, we have checked and qualified a large share of our materials against required specifications. We can qualify additional materials on request.

Due to the special requirements of the aerospace industry, Ensinger takes on responsibility for: raw materials receipt inspections, raw materials specifications, composition specifications for individual articles, final inspections, issuing of inspection certificates, and much more.

In addition, Ensinger can offer the complete documentation and traceability for all materials and manufacturing processes. The reliability of these processes is documented through all production procedures, such as compounding, semi-finished product extrusion and finished product production through injection moulding or machining.

TECASINT 4121 / TECASINT 2021 (PI) Low friction and abrasion. HDT / A up to 470 °C.

TECASINT 4111/ TECASINT 2011 (PI) Unfilled, best mechanical characteristics. highest purity. Low outgassing in vacuum.

TECASINT 2391 (PI) Modified with MoS, Best gliding properties in vacuum. Low outgassing in vacuum.

#### TECATOR 5013 natural (PAI) Highest compression strength and impact resistance. Excellent electrical insulation and high dielectric constant.

**TECAPEEK** natural (PEEK) Long-term service temperatures of up to +260 °C Excellent mechanical properties even at high temperatures.

TECAPEEK CF30 black (PEEK CF) Very high strength value due to carbon fibre reinforcement. Very abrasion-resistant.

#### TECAPEEK GF30 natural (PEEK GF) Glass-fibre reinforced. Increased strength. Outstanding chemical resistance.

TECAPEEK ELS nano black (PEEK CNT) Electrically conductive. Outstanding chemical resistance. Good machinability.

TECATRON GF40 natural (PPS GF) Extremely high strength due to glass-fibre reinforcement. Very good chemical resistance.

**TECASON P** natural (PPSU) High thermal dimensional stability. Good toughness.

**TECAPEI** natural (PEI) Long-term service temperature up to 170 °C. Resistance to high-energy radiation.

#### **TECAFLON PTFE natural** (PTFE) Exceptional chemical resistance. Particularly low coefficient of friction. Ideally suited for soft mating partners.

TECAMID 66 natural (PA 66) Easily glued and welded. Electrically insulating and good machining properties.

TECAMID 66 MO black (PA 66 MoS) Good UV-resistance. Low abrasion.

TECAMID 66 GF35 natural (PA 66 GF) Glass-fibre reinforced. High strength.

TECAFORM AH natural

(POM-C) Good chemical resistance. Hiah resilience.

TECAFORM AH ELS black (POM-C, Conductive carbon) Electrically conductive.

TECAFORM AH SD natural (POM-C. Anti-static agent) Static dissipating, carbon-free. Inherently effective, permanently non-contaminating anti-static agent.

TECAFORM AD natural (POM-H) High mechanical

strenath. Very good machining properties.

TECAFORM AD AF natural (POM-H TF) Very good slide friction properties. Low water absorption.

#### Application examples

Wire coil for solar panel TECASINT 2391 black (PI) Low outgassing in accordance with ESA standard. High rigidity with low weight.

Sensor plate (Component of aircraft air conditioning system) TECAPEEK GF30 natural (PEEK GF) High temperature resistance.



Dimensionally stable.

Twin Pulley (Assembly for baggage-tray lift) TECAPEI GF30 natural mod. (PEI GF) High temperature resistance. Inherently flame-retardant. Very strong and rigid.



Attenuation tube (Use in landing unit) TECAFORM AH white (POM-C) Dimensionally stable. Grease-resistant.





Output Pulley (Assembly for baggage-tray lift) TECAPEI GF30 natural mod. (PEI GF) High temperature resistance. Inherently flame-retardant. Very strong and rigid.





# Electrics and Electronics

#### With excellent electrical properties ranging from fully insulating to electrically conductive, plastics are an essential material in the electrotechnical industry.

Plastics, which when unmodified are generally electrically insulating, can be adjusted to provide properties ranging from antistatic to conductive by modification with conductivity additives. At the same time, the basic polymers can be selected for their inherent suitability to the application in question. This opens up extensive material diversity and consequently a broad range of possible applications in the electronic and mechanical engineering industries.

The wide range of different electrotechnical applications is reflected in the diverse requirements imposed on the plastics used. To ensure the reliable handling of highly sensitive electronic components, statically dissipating materials may also have to be used. This allows damage or destruction of the components to be significantly reduced during production. Electrically active materials are also used in the mechanical engineering industry, in conveyor technology and in the field of explosion protection. In these applications, the ability to selectively dissipate electrical charges is a decisive factor in the prevention of explosive discharges. Plastics with modified conductivity also have a range of benefits to offer over metal when used in electrical components or when exposed to the effects of weather or damp. Consequently some of these materials have good resistance to weathering, provide protection against thermomechanical stress and are only minimally susceptible to corrosion. Because of these properties, they enjoy increasing use in automotive applications and in the field of renewable energies.

Depending on the required degree of conductivity, Ensinger has a variety of materials to offer in the field of engineering or high-performance plastics.

#### Ensinger materials for the electrotechnical industry

#### TECASINT 5201 black (PAI) High thermal-mechanical load properties, statically dissipating.

#### TECAPEEK ELS nano black

(PEEK, CNT) Electrically conductive, excellent chemical resistance, good machining properties. → p. 48

#### TECAFLON PVDF ELS black

(PVDF, conductive soot) Very good chemical resistance, thermal applications up to 150 °C, electrically conductive. TECAFORM AH SD natural (POM-C, antistatic) Static dissipating, carbon-free. Inherently effective, permanently non-contaminating anti-static agent. → p. 14

TECAFORM AH ELS black (POM-C, conductive soot) Electrically conductive with special carbon black for general applications.  $\rightarrow$  p. 14

#### Application examples

#### Fibre guide

TECAFORM AH ELS black (POM-C, conductive carbon) Dissipation of electrostatic charging. Good toughness and strength. Good sliding friction properties.

#### Fixing flange

TECAFLON PVDF natural (PVDF) Very good chemical resistance. Very good UV-resistance. Good compression strength.



#### Contact socket

TECADUR PBT GF30 natural (PBT GF) Very good electrical insulation. Low water absorption. Excellent dimensional stability.



#### Conductivity ranges Surface resistance [ $\Omega$ ]

| Standard<br>plastic                                               | tandard SD<br>plastic            |                                 | Metal                                                            |
|-------------------------------------------------------------------|----------------------------------|---------------------------------|------------------------------------------------------------------|
| insulating                                                        | antistatic static                | conductive                      | conducting                                                       |
|                                                                   |                                  |                                 |                                                                  |
|                                                                   |                                  |                                 |                                                                  |
| 10 <sup>16</sup> 10 <sup>14</sup> 10                              | $1^{12}$ $10^{10}$ $10^8$ $10^8$ | <sup>6</sup> 10 <sup>4</sup> 10 | D <sup>2</sup> 10 <sup>0</sup> 10 <sup>-2</sup> 10 <sup>-4</sup> |
|                                                                   |                                  |                                 |                                                                  |
| Plastics without<br>carbon fibres<br>or conductivity<br>additives | TECAFORM<br>AH SD natur          | TECAF<br>al TECAF               | FORM AH ELS black<br>PEEK ELS nano black                         |
|                                                                   |                                  |                                 |                                                                  |

Carbon fibre-filled plastics





## Sliding bearings, gears, guide elements and rollers frequently call for materials with good tribological characteristics.

Ensinger has extensive experience in the field of sliding applications, and offers a wide portfolio of tribological materials. A range of different additives to improve sliding properties can be used in order to ensure optimum compliance with requirements depending on the application. Together with the individual properties of plastics, these offer a range of possibilities for wide-ranging tribological applications.

However, selection of a suitable material depends not only on the thermal or mechanical requirements of the application. To allow suitable material recommendations to be made, a range of other system conditions such as pressure, relative sliding velocity, the structural design and the properties of the mating partner (surface roughness) are determining factors.

With the aid of calculation modules, our application technicians will be pleased to help you with the material selection process to ensure that you find the most suitable material for the construction of your sliding application.

#### Coefficient of friction





Mean coefficient of frictionMean coefficient of static friction

Pin on disc tests against steel, dry, RT; load stages: 3N at medium velocity

#### Ensinger materials for slide-friction applications

**TECAFORM AH LA blue** (POM-C, solid lubricant) Very good sliding and wear values. Low water absorption.

#### TECAFORM AD AF natural

(POM-H, TF) Very good sliding properties due to PTFE component. Low water absorption.  $\rightarrow$  p. 17, 18

**TECAMID 66 MO black** (PA 66 MoS<sub>2</sub>) Good UV resistance. Low abrasion.  $\rightarrow$  p. 21, 23

#### TECAMID 66 LA natural

(PA 66, solid lubricant) Very good sliding and wear properties with soft contact surfaces. Tough with good strength.  $\rightarrow$  p. 21, 23

#### TECAMID 6 MO black

(PA 6 MoS₂)
Good UV resistance and surface hardness.
Good machining properties and dimensional stability.
→ p. 21, 23

#### **TECAST MO black** (PA 66 MoS<sub>2</sub>)

Good UV stability. High surface hardness. → p. 27, 28

#### TECAST L natural

(PA 6 C, oil) Good sliding properties, also in dry running conditions. Good stickslip behaviour. Tough. Good thermal stability. Good electrical insulation.  $\rightarrow$  p. 27, 28

### TECAGLIDE green

(PA 6 C, solid lubricant) Low coefficient of friction. Polymer lubricants (no silicon additives). → p. 27, 28

#### **TECAPET TF grey** (PET TF) High abrasion resistance. Excellent sliding friction properties. $\rightarrow$ p. 33, 34

# TECAFLON PTFE natural Trolley

(PTFE) Exceptional chemical resistance. Particularly low coefficient of friction, suitable for soft sliding surfaces.  $\rightarrow$  p. 40, 41

#### TECAPEEK PVX black (PEEK CF CS TF) Very good sliding values. Suitable for bearings under high levels of stress

under high levels of stress. → p. 50, 51 TECAPEEK TF10 blue

#### (PEEK TF) Very good sliding properties. Electrically insulating,

free of carbon.

Also possible in sliding applications: TECAFORM AH TECAFORM AD TECAMID 66 TECAMID 6 TECAMID 66 CF20 black TECAPET TECAPEEK TECASINT

#### Application examples

#### TECAFORM AH natural (POM-C) Good sliding properties. Good strength.

Good strength. Minimal moisture absorption. Good dimensional stability.

### Guide rails

TECAPET TF grey (PET TF) Good sliding properties. High dimensional stability. Low wear. High strength.





#### Gear

TECAFORM AH black (POM-C) Good strength. Good sliding properties. Minimal moisture absorption. Good dimensional stability.



#### Abrasion indicators

|                        | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
|------------------------|---|-----|-----|-----|-----|-----|-----|
|                        |   |     |     |     |     |     |     |
| TECAMID 6              |   |     |     |     | I   |     |     |
| TECAMID 66             |   |     |     |     |     |     |     |
| TECAST T               |   |     |     |     |     |     |     |
| TECAST L               |   |     |     |     |     |     |     |
| TECAGLIDE green        |   |     |     |     |     |     |     |
| TECAFORM AD            |   |     |     |     |     |     |     |
| TECAFORM AD AF natural |   |     |     |     |     |     |     |
| TECAFORM AH            |   |     |     |     |     |     |     |
| TECAPET                |   |     |     |     |     |     |     |
| TECAFLON PVDF          |   |     |     |     |     |     |     |
| TECATRON PVX black     |   |     |     |     |     |     |     |
| TECAPEEK               |   |     |     |     |     |     |     |
| TECAPEEK TF10 blue     |   |     |     |     |     |     |     |
| TECAPEEK PVX black     |   |     |     |     |     |     |     |
| TECATOR 5031           |   |     |     |     |     |     |     |
| TECASINT 2021 black    |   | -   |     |     |     |     |     |

Rotating ball prism against steel, dry, RT, load stage: 30N over 100h at medium velocity Special materials

# Calendered plates

Thin plates in the range of just a few millimetres and below with a relatively large width are manufactured using calendering technology. This process permits close tolerances to be achieved. These plates are used as the starting material for punching processes (seals) or also in a special version for thermoforming.

#### Overview of types

TECAFORM AH (POM-C) Good chemical resistance. High resilience.

TECAMID 6 (PA 6) Extreme toughness and impact resistance. Good chemical resistance.

TECAMID 66

(PA 66) Good adhesion and welding properties. Electrically insulating, Good machining properties.

TECADUR PET (PET) Good machining properties. High strength.

#### TECANAT (PC) High toughness and transparency. High service temperature.

Thermoformable PEEK. Long-term service

(PEEK)

TECAPEEK VF natural

temperature up to 260 °C. Excellent chemical resistance.

TECASON P VF (PPSU)

Thermoformable PPSU. Excellent thermal dimensional stability. Good sterilization resistance.

TECAMID 6 GF12 VF black (PA 6 GF) Glass fibre reinforced polyamide with very high strength. Thermoformable Good chemical resistance.

#### Application examples

Housing cover TECAPEEK VF natural (PEEK) Good thermoformability. High level of thermal stability. Good resistance to oil and grease even at high temperatures. Electrically insulating.







Sterilization container TECASON P VF grey (PPSU) Good thermal formability. Good sterilization resistance. Minimal weight. High rigidity.



#### **CALENDERED** Plates

|                                                                                                 | TECAFORM<br>AH natural                                  | TECAMID<br>6 natural                                    | TECAMID<br>66 natural                  | TECADUR<br>PET natural                 |                                                                                 |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|
| Polymer                                                                                         | POM-C                                                   | PA 6                                                    | PA 66                                  | PET                                    |                                                                                 |
| Density [g/cm³]                                                                                 | 1.41                                                    | 1.14                                                    | 1.15                                   | 1.39                                   |                                                                                 |
| Colour                                                                                          | white<br>opaque                                         | ivory<br>opaque                                         | ivory<br>opaque                        | white<br>opaque                        |                                                                                 |
|                                                                                                 |                                                         |                                                         |                                        |                                        | Tolerance                                                                       |
|                                                                                                 |                                                         |                                                         |                                        |                                        |                                                                                 |
| Dimensions [mm]                                                                                 | [kg/m]                                                  | [kg/m]                                                  | [kg/m]                                 | [kg/m]                                 | [mm]                                                                            |
| Dimensions [mm]<br>0.5 × 1,000                                                                  | [kg/m]<br>0.774                                         | [kg/m]<br>0.590                                         | [kg/m]                                 | [kg/m]                                 | [mm]<br>-0.02/+0.08                                                             |
| Dimensions [mm]<br>0.5 × 1,000<br>1 × 1,000                                                     | [kg/m]<br>0.774<br>1.46                                 | [kg/m]<br>0.590<br>1.18                                 | [kg/m]                                 | [kg/m]                                 | [mm]<br>-0.02/+0.08<br>-0.10/+0.10                                              |
| Dimensions [mm]<br>0.5 × 1,000<br>1 × 1,000<br>2 × 1,000                                        | [kg/m]<br>0.774<br>1.46<br>2.92                         | [kg/m]<br>0.590<br>1.18<br>2.36                         | [kg/m]<br>2.38                         | [kg/m]<br>2.88                         | [mm]<br>-0.02/+0.08<br>-0.10/+0.10<br>-0.15/+0.15                               |
| Dimensions [mm]<br>0.5 × 1,000<br>1 × 1,000<br>2 × 1,000<br>3 × 1,000                           | [kg/m]<br>0.774<br>1.46<br>2.92<br>4.38                 | [kg/m]<br>0.590<br>1.18<br>2.36<br>3.54                 | [kg/m]<br>2.38<br>3.57                 | [kg/m]<br>2.88<br>4.32                 | [mm]<br>-0.02/+0.08<br>-0.10/+0.10<br>-0.15/+0.15<br>-0.20/+0.20                |
| Dimensions [mm]<br>0.5 × 1,000<br>1 × 1,000<br>2 × 1,000<br>3 × 1,000<br>4 × 1,000              | [kg/m]<br>0.774<br>1.46<br>2.92<br>4.38<br>5.84         | [kg/m]<br>0.590<br>1.18<br>2.36<br>3.54<br>4.72         | [kg/m]<br>2.38<br>3.57<br>4.76         | [kg/m]<br>2.88<br>4.32<br>5.76         | [mm]<br>-0.02/+0.08<br>-0.10/+0.10<br>-0.15/+0.15<br>-0.20/+0.20                |
| Dimensions [mm]<br>0.5 × 1,000<br>1 × 1,000<br>2 × 1,000<br>3 × 1,000<br>4 × 1,000<br>5 × 1,000 | [kg/m]<br>0.774<br>1.46<br>2.92<br>4.38<br>5.84<br>7.30 | [kg/m]<br>0.590<br>1.18<br>2.36<br>3.54<br>4.72<br>5.90 | [kg/m]<br>2.38<br>3.57<br>4.76<br>5.95 | [kg/m]<br>2.88<br>4.32<br>5.76<br>7.20 | [mm]<br>-0.02/+0.08<br>-0.10/+0.10<br>-0.15/+0.15<br>-0.20/+0.20<br>-0.25/+0.25 |

Tolerances according to DIN:

Length 0/+3% - Width +5/+25mm Stock lengths: 2,000mm

#### **CALENDERED** Plates

|                 | TECASON<br>P VF smoke | TECASON<br>P VF beige | TECASON<br>P VF yellow | TECASON<br>P VF grey |             |
|-----------------|-----------------------|-----------------------|------------------------|----------------------|-------------|
| Polymer         | PPSU                  | PPSU                  | PPSU                   | PPSU                 |             |
| Density [g/cm³] | 1.29                  | 1.29                  | 1.29                   | 1.29                 |             |
| Colour          | grey<br>transparent   | beige<br>opaque       | yellow<br>opaque       | grey<br>opaque       |             |
|                 |                       |                       |                        |                      | Tolerance   |
| Dimensions [mm] | [kg/m]                | [kg/m]                | [kg/m]                 | [kg/m]               | [mm]        |
| 3 × 400         | 1.55                  |                       |                        |                      | -0.20/+0.20 |
| 4 × 400         |                       | 2.06                  | 2.06                   | 2.06                 |             |

Tolerances according to DIN: Length 0/+3% - Width +5/+25mm

Stock lengths: 700 mm

#### **CALENDERED** Plates

|                 | TECANAT<br>natural   |             |
|-----------------|----------------------|-------------|
| Polymer         | PC                   |             |
| Density [g/cm³] | 1.19                 |             |
| Colour          | white<br>transparent |             |
|                 |                      | Tolerance   |
| Dimensions [mm] | [kg/m]               | [mm]        |
| 1×1,250         | 1.54                 | -0.10/+0.10 |
| 2×1,250         | 3.10                 | -0.15/+0.15 |
| 3×1,250         | 4.65                 | -0.20/+0.20 |
| 4×1,250         | 6.19                 |             |
| 5×1,250         | 7.68                 | -0.25/+0.25 |
| 6×1.250         | 9.21                 |             |

Tolerances according to DIN:

Length 0/+3% - Width +5/+25mm Stock lengths: 2,000mm Special materials

Stock item
Non-stock item -

Non-stock item – special production

**Modifications in colour and diameter on request.** Other delivery lengths possible, also available planed. The specified kg/m weights are purely arithmetic figures. Weight on delivery will deviate from the figures given above. All figures given without obligation. Please find the latest information at www.ensinger-online.com



# Compression moulding

Compression moulding is a processing method for the manufacture of stock shapes or finished and semi-finished components which may require further processing.

The compression moulding process is primarily suited for finished parts in medium piece numbers, as the tooling costs are generally lower than other processes such as injection moulding. For stock shapes, this process allows larger dimensions to be achieved than is the case for extrusion. The benefits of compression moulded components and stock shapes:

- → Semi-finished part geometries close to finished measurement
- $\rightarrow$  Extreme economy due to material savings
- → Low tendency to warp due to almost isotropic characteristics
- $\rightarrow$  Extremely low intrinsic stress levels
- $\rightarrow$  Consequently also easier to machine

However, the costs of producing stock shapes are higher compared to extrusion due to the discontinuous production process.

#### Application examples

Piston rings TECASINT 2022 black (PI) Very good sliding properties. Low wear. High strength.



Slide bush TECASINT 2011 natural (PI) Very high toughness. High strength. Very good thermal resistance. Good sliding properties.



#### Overview of types

Polyimide (PI) Available unfilled or modified with glass fib carbon fibres, PTFE and graphite and combinat of these materials. → p. 57

#### Polyamidimide (PAI)

Available unfilled or modified with glass fib carbon fibres, PTFE and graphite and combinat of these materials.

#### Polyetheretherketone (PEEK)

Unfilled or in modificat with glass fibres, carbo fibres, PTFE and graph and combinations of these materials, also st dissapative available. e.g. TECAPEEK CM nat (XP-96), TECAPEEK GF30 СМ (ХР-91), ТЕСАРЕЕК СМ GR15 TF10 black (XP-101), TECAPEEK CM CF10 GR10 TF10 black (XP-100)

|                     | Polyphenylensulphide<br>(PPS)                                                                                                                                                                      | Plates              |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| ores,<br>d<br>:ions | May be modified with<br>glass fibres, carbon fibres,<br>PTFE and graphite and<br>combinations of these<br>materials.<br>e.g. TECATRON GF40<br>CM (XP-86), TECATRON<br>GF15 GR10 TF10 CM<br>(XP-88) | Polymer<br>PAI      |  |
|                     |                                                                                                                                                                                                    | PEEK                |  |
| ores,<br>d          | <b>Polytetrafluorethylene</b><br>(PTFE)                                                                                                                                                            | (unfilled / filled) |  |
| ions                | Available as modification with mica.                                                                                                                                                               |                     |  |
|                     | <b>Polyvinylidenfluoride</b><br>(PVDF)                                                                                                                                                             | PPS / PEI           |  |
| tions<br>on         | Available unfilled.                                                                                                                                                                                |                     |  |
| ite                 | Perfluoralkoxylalkane                                                                                                                                                                              |                     |  |
| tatic               | (PFA)<br>Available unfilled.                                                                                                                                                                       | PCTFE / PFA         |  |
|                     |                                                                                                                                                                                                    |                     |  |
| tural               | Polychlortrifluorethylene                                                                                                                                                                          |                     |  |

### Many other modifications

Available unfilled.

on request.

(PCTFE)



| Polymer             | Dimensions<br>[mm] | Width × Length<br>[mm] |
|---------------------|--------------------|------------------------|
| PAI                 | 6.3 - 50.8         | 254.0×254.0            |
|                     | 6.3 - 50.8         | 330.2 × 330.2          |
|                     | 6.3 - 38.1         | 304.8×381.0            |
|                     | 9.5 - 38.1         | 381.0×762.0            |
|                     | 9.5 - 38.1         | 609.6×609.6            |
| PEEK                | 6.3 - 76.2         | 254.0×254.0            |
| (unfilled / filled) | 6.3 - 63.5         | 330.2 × 330.2          |
|                     | 6.3 - 50.8         | 304.8×381.0            |
|                     | 6.3 - 63.5         | 381.0×762.0            |
|                     | 9.5 - 63.5         | 609.6×609.6            |
| PPS / PEI           | 6.3 - 76.2         | 254.0×254.0            |
|                     | 6.3 - 63.5         | 330.2 × 330.2          |
|                     | 6.3 - 50.8         | 304.8×381.0            |
|                     | 6.3 - 63.5         | 381.0×762.0            |
|                     | 9.5 - 63.5         | 609.6 × 609.6          |
| PCTFE / PFA         | 6.3 - 76.2         | 254.0×254.0            |
|                     | 6.3 - 63.5         | 330.2 × 330.2          |
|                     | 6.3 - 50.8         | 304.8×381.0            |
|                     | 6.3 - 63.5         | 381.0×762.0            |
|                     | 9.5 - 63.5         | 609.6×609.6            |

|                 | Rods             | 0              | Discs            |                | Tubes                          | 0                            |
|-----------------|------------------|----------------|------------------|----------------|--------------------------------|------------------------------|
| Polymer         | Diameter<br>[mm] | Length<br>[mm] | Diameter<br>[mm] | Length<br>[mm] | Outer diameter<br>[mm]         | Length<br>[mm]               |
| PAI             | 25.4 - 79.4      | 76.2 - 152.4   | 82.6 - 508.0     | 12.7 - 50.8    | 38.1 - 2070.1                  | 76.2 - 152.4                 |
| PEEK (unfilled) | 25.4 - 79.4      | 76.2 - 152.4   | 82.6 - 660.4     | 12.7 - 76.2    | 38.1 - 2070.1                  | 76.2 - 152.4                 |
| PEEK (filled)   | 25.4 - 79.4      | 76.2 - 152.4   | 82.6 - 660.4     | 12.7 - 76.2    | 38.1 - 203.2<br>209.6 - 2070.1 | 76.2 - 203.2<br>76.2 - 152.4 |
| PPS / PEI       | 25.4 - 101.6     | 76.2 - 304.8   | 107.9 - 660.4    | 12.7 - 88.9    | 38.1 - 203.2<br>209.6 - 2070.1 | 76.2 - 304.8<br>76.2 - 152.4 |
| PCTFE / PFA     | 25.4 - 63.5      | 76.2 - 152.4   | 69.8 - 660.4     | 12.7 - 63.5    | 38.1 - 2070.1                  | 76.2 - 152.4                 |

Technical data for Compression Moulding Products may differ from the data on pages 96 - 105 and the data sheets at ensinger-online.com. Please contact the Ensinger technical service for more information.

### Product handling

Ensinger plastics are used as the raw material for a wide range of high-quality components and end products in fields such as the food industry and medical technology, as well as mechanical and automotive engineering, semiconductor technology and in the aerospace industry. To ensure the high standard of quality and functionality in our materials for these applications, and also over extended storage periods, certain factors must be taken into consideration in the storage, treatment and handling of Ensinger stock shapes. By taking these precautions, it is possible to ensure that external influences are unable to significantly diminish the material properties. In the case of finished parts, the manufacturer or user is required to individually submit a statement of this, as conditions can differ considerably depending on the storage or utilization period.

1. Storage and handling should take place in such a way that the material designations and product numbers (batch number) are clearly recognizable on the semi-finished products and can be maintained. This allows clear identification and traceability of products in the event of a possible complaint, allowing the possible root cause of the problem to be determined.

2. Weathering effects can impact on the properties of plastics. As result of the impact of solar radiation (UV radiation), atmospheric oxygen and moisture (precipitation, humidity) can exert a lasting negative impact on material characteristics. These influences can result in colour changes, oxidation of surfaces, swelling, warping, brittleness or even a change in mechanical properties. For this reason, semi-finished products should not be exposed to direct sunlight or the effects of weather over protracted periods. Ideally, the semi-finished products should be stored in closed rooms under normal climatic conditions (23 °C / 50 % rH).

The following materials in particular should be protected against the influence of the weather:

- → TECAPEEK (PEEK)\*
- $\rightarrow$  TECATRON (PPS)\*
- → TECASON P (PPSU)\*
- $\rightarrow$  TECASON S (PSU)<sup>\*</sup>
- $\rightarrow$  TECASON E (PES)\*
- → TECAFORM AH, AD (POM-C, POM-H)\*\*
- → TECAPET (PET)\*\*
- → TECAMID 6, 66, 11, 12, 46 (PA 6, 66, 11, 12, 46)\*\*
- $\rightarrow$  TECAST (PA 6 C)\*\*
- → TECAFINE (PE, PP)\*\*
- → TECARAN ABS (ABS)\*

\* All variations should be protected generally

\*\* Not black-coloured variants should be protected

3. Wherever possible, plastics should not be exposed to low temperatures over long periods. In particular, marked fluctuations in temperature should be avoided, as this can cause stock shapes to warp or become brittle. Where this type of partially reversible brittleness occurs in stock shapes which have been stored at temperatures below freezing, careful handling is required. Hard knocks caused by throwing or dropping should be avoided, as otherwise cracks and fracture damage can occur. In addition, semi-finished products stored in cold conditions should be allowed sufficient time to acclimatize to room temperature before processing. This can help to prevent defects such as cavities occurring during processing. It will also help to compensate for shrinkage or also elongation after exposure to hot atmospheres caused by the high coefficient of linear thermal expansion of plastics.

4. Semi-finished products made of plastic should consequently always be stored flat or on a suitable support (in the case of rods and tubes) and with the greatest possible surface contact in order to avoid deformation through their own intrinsic weight or heat.

5. When handling plastic semi-finished products, ensure that suitable warehousing equipment is used. Ensure that storage facilities, lifting gear, slings and other lifting equipment are stable and secure. Stock shapes must also be stored and stacked so as to eliminate any danger of tipping or falling. Bear in mind here that plastics often have a relatively low coefficient of friction and are consequently easily able to slip out of load suspension devices, with the possibility of serious injury to staff members. 6. Avoid the effects of high-energy radiation such as gamma or X rays wherever possible due to possible microstructure damage through molecular breakdown.

7. Plastic stock shapes should be kept away from all kinds of chemicals and water in order to prevent possible chemical attack or the absorption of moisture. Contact with chemicals or water can result in swelling, chemical decomposition or stress cracking.

8. Plastics are organic substances and consequently combustible. The combustion or decomposition products may have a toxic or corrosive effect. If correctly stored, plastics themselves do not pose a fire risk. However, they should not be stored together with other combustible substances. On this subject, observe the product handling information sheets for the individual materials.

9. Under normal conditions, plastic semi-finished or finished products do not release any toxic constituents and permit risk-free surface contact. Tobacco products should not be allowed in the vicinity when handling and machining plastics, as particles of some plastics (in particular fluoropolymers) can release strong toxic gases in some cases during pyrolization of the smouldering tobacco. In respect of health protection, please also note the product handling information sheets for the individual materials.

10. If the above recommendations are adhered to, it may be assumed that no significant changes to typical properties will occur during the storage period. It is possible that minimal surface discolouration may occur due to environmental influences. However, this does not represent any significant deterioration of material properties, as the surface is generally only affected down to a few microns in depth.

11. Plastic waste and chips can be processed and recycled by professional recycling companies. However, it is also possible to send the waste for thermal processing to generate energy by a professional company in a combustion plant with a suitable emission control in place. This applies in particular to applications where the plastic waste produced is contaminated, e.g. in the case of machining swarf contaminated with oil. In order to store finished and semi-finished products for high levels of manufacturing precision, we consequently recommend storage under constant conditions in a normal climate (23  $^{\circ}C/50 \%$  rH). This allows external influences to be minimized and dimensional stability to be maintained over long periods.

It is not possible to specify a maximum storage period, as this depends heavily on the materials, storage conditions and external influences.

These recommendations should always be adjusted in line with individual requirements and circumstances. They do not replace the fundamentally applicable statutory regulations, or exonerate customers using the products from their responsibility or individuals from their duty of care. These are merely intended as recommendations drawn up on the basis of current knowledge. They do not constitute any generally applicable assurance.

#### Annealing

Ensinger stock shapes are always subjected in principle to a special annealing process after production to reduce the internal tension created during manufacture. Annealing is carried out in a special recirculating air oven, but can also take place in an oven with circulating nitrogen or in an oil bath. Annealing results in increased crystallinity, as well as improved strength and chemical resistance. It also brings about a reduction of inner tension as described above and increases dimensional stability over a wide temperature range.



Temperature oven

...... Temperature in center of semi-finished or finished product

### Processing of plastics

#### **General information\***

Non-reinforced thermoplastic polymers can be machined using high speed steel tools. For reinforced materials, carbide-tipped tools are necessary. In all cases, only correctly sharpened tools should be used. Due to the poor thermal conductivity of plastics, good heat dissipation must be ensured. The best form of cooling is heat dissipation via the chip.

#### Dimensional stability

Dimensionally accurate parts presuppose the use of stress relieved semi-finished products. Heat from machining will otherwise result in the release of machining stresses and distortion of the part. If large amounts of material are to be removed, an interstage annealing may be necessary after rough machining to relieve the resulting thermal stresses. For temperatures and times please contact the Ensinger technical service. Materials with high moisture absorption (e.g. polyamides) may have to be conditioned in water before machining. Plastics require higher production tolerances than metals. Furthermore, the very much higher thermal expansion needs to be taken into consideration.

#### Machining methods

**1.** *Turning* Guide values for tool geometry are given in the table. For surfaces with particularly high quality demands, the tool must be designed as a wide smoothing tool as shown in Figure 1. For parting off, the lathe tool should be ground as shown in Figure 2 to prevent the formation of burrs. For thin-walled and particularly flexible workpieces, on the other hand, it is better to work with tools that are ground to a knife-like cutting geometry (Figure 3).



\* Our applications advice, both written and oral, is intended to help you in your work. It must be regarded as a recommendation without obligation, also with respect to possible third-party property rights. We can assume no liability for any damage occurring during machining. **2.** *Milling* For planed surfaces, face milling is more economical than peripheral milling. For peripheral and profiling milling, the tools should not have more than two cutters so that vibrations caused by the number of cutters are kept low and the gaps between the chips are sufficiently large. Optimum cutting performances and surface finishes are obtained with single-cutter tools.

**3.** *Drilling* Twist drills can generally be used. These should have a twist angle of 12° to 16° and very smooth spiral grooves for good chip removal. Larger diameters should be predrilled or should be produced using hollow drills or by cutting out. Particular attention should be paid to properly sharpened drills when drilling into solid material, as otherwise the resulting compressive stresses can increase to the extent that the material splits.



Reinforced plastics have higher residual processing stresses and a lower impact resistance than non-reinforced plastics and are therefore particularly susceptible to cracking. Where possible, they should be heated to around 120° C before drilling. (Heating time approx. 1 hour per 10 mm cross-section). This method is also to be recommended for polyamide 66, polyester and large diameter cast nylon.

**4. Sawing** Unnecessary heat generation caused by friction must be avoided, as thick-walled parts are generally cut with relatively thin tools during sawing. Well sharpened sawblades with large tooth offsets are therefore expedient.

**5.** *Thread cutting* Threads are best cut using thread chasers. Burr formation can be avoided by using twin-toothed chasers. Die nuts are not to be recommended as post-cutting must be anticipated during removal of the nut. A machining allowance (dependent on material and diameter; guide value: 0.1 mm) must frequently be made when using tap drills.

**6.** Safety precautions Failure to observe the machining guidelines can result in localised overheating which can lead to material degradation. Released decomposition products, e.g. from PTFE fillers, must be removed using extraction facilities. In this context, tobacco products must be kept out of the production area due to the risk of polymer flu fever.

## Machining guidelines

|                                 | Sawing                  |         |                                                                                     |           | Drill          | Drilling         |               |              |                                                                                                                                                                                      |              |  |
|---------------------------------|-------------------------|---------|-------------------------------------------------------------------------------------|-----------|----------------|------------------|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
|                                 |                         |         | n rotation speed [rpm]<br>α clearance angle [°]<br>γ rake angle [°]<br>t pitch [mm] |           | φ              | $\varphi$        |               |              | <ul> <li>α clearance angle [°]</li> <li>β twist angle [°]</li> <li>γ rake angle [°]</li> <li>φ point angle [°]</li> <li>V Cutting speed [rpm]</li> <li>S Feed rate [mm/r]</li> </ul> |              |  |
|                                 | Circular saw            |         | Band saw                                                                            |           |                |                  |               |              |                                                                                                                                                                                      |              |  |
|                                 | rotation speed<br>[rpm] | pitch   | cutting<br>speed                                                                    | pitch     | numl<br>of tee | er twi<br>th ang | st r<br>le ar | rake<br>1gle | cutting<br>speed                                                                                                                                                                     | feed<br>rate |  |
| TECAFINE PE/PP                  | 2800 - 3000             | 31 - 38 | 130 - 180                                                                           | 11 – 15   | -              | 72 7             | 5             | 90           | 50 - 150                                                                                                                                                                             | 0.1-0.3      |  |
| TECAFINE PMP                    | 2800 - 3000             | 31 - 38 | 130 - 180                                                                           | 11 – 15   | 7              | 72 7             | 5             | 90           | 50 - 150                                                                                                                                                                             | 0.1-0.3      |  |
| TECARAN ABS                     | 2600                    | 31 - 38 | 130 - 180                                                                           | 11 – 15   | 7              | 72 7             | 5             | 90           | 50 - 200                                                                                                                                                                             | 0.2-0.3      |  |
| TECANYL                         | 2800-3000               | 31 - 38 | 130 - 180                                                                           | 11-15     |                | 72 7             | 5             | 90           | 50 - 100                                                                                                                                                                             | 0.2-0.3 •    |  |
| TECAFORM AD/AH                  | 2800-3000               | 31 - 38 | 130 - 180                                                                           | 11 – 15   | -              | 22 2             | 5             | 90           | 50 - 150                                                                                                                                                                             | 0.1-0.3      |  |
| TECAMID, TECARIM, TECAST        | 2000 - 2600             | 31 - 38 | 130 - 180                                                                           | 11 - 15 🛛 |                | 72 7             | 5             | 90           | 50 - 150                                                                                                                                                                             | 0.1-0.3 🔍    |  |
| TECADUR/TECAPET                 | 2200 - 2600             | 31 - 38 | 130 - 180                                                                           | 11 - 15 🛛 |                | 72 7             | 5             | 90           | 50 - 100                                                                                                                                                                             | 0.2-0.3 🔸    |  |
| TECANAT                         | 2400                    | 31 - 38 | 130 - 180                                                                           | 11-15     |                | 22 2             | 5             | 90           | 50 - 100                                                                                                                                                                             | 0.2-0.3 •    |  |
| TECAFLON PTFE/PVDF              | 2800 - 3000             | 20 - 24 | 130 - 180                                                                           | 11 – 15   | 2              | 22 2             | 5             | 90           | 150 - 200                                                                                                                                                                            | 0.1-0.3      |  |
| TECAPEI                         | 3000                    | 20 - 24 | 130 - 180                                                                           | 11–15 🔍   |                | 72 7             | 5             | 90           | 20 - 80                                                                                                                                                                              | 0.1-0.3 •    |  |
| TECASON S, P, E                 | 3000                    | 20 - 24 | 130 - 180                                                                           | 11–15 🔍   |                | 72 7             | 5             | 90           | 20 - 80                                                                                                                                                                              | 0.1-0.3 •    |  |
| TECATRON                        | 3000                    | 20 - 24 | 130 - 180                                                                           | 11 – 15   | 2              | 22 2             | 5             | 90           | 50 - 200                                                                                                                                                                             | 0.1-0.3      |  |
| TECAPEEK                        | 3000                    | 20 - 24 | 130 - 180                                                                           | 11 – 15   | 2              | 22 2             | 5             | 90           | 50 - 200                                                                                                                                                                             | 0.1-0.3      |  |
| TECATOR                         | 3000                    | 20 - 24 | 130 - 180                                                                           | 11 – 15   | 2              | 72 7             | 5             | 90           | 80 - 100                                                                                                                                                                             | 0.02 – 0.1   |  |
| TECASINT                        | 3000                    | 20 - 24 | 130 - 180                                                                           | 11 – 15   | 7              | 72 7             | .5 1          | 120          | 80 - 100                                                                                                                                                                             | 0.02 – 0.1   |  |
| Reinforced/filled TECA products | 2400 - 2800             | 20 - 24 | 110 - 150                                                                           | 11 - 15   |                | 22 2             | 5 1           | 100          | 80 - 100                                                                                                                                                                             | 0.1-0.3 •    |  |

\* Reinforcing agents/fillers:

Glass fibres, glass beads, carbon fibres, graphite, mica, talcum, etc.

#### Heat before sawing:

from Ø 60 mm TECAPEEK GF/PVX, TECATRON GF/PVX  $\begin{array}{ll} \mbox{from } \emptyset \mbox{80\,mm} & \mbox{TECAMID} \mbox{ 66 GF, TECAPET, TECADUR PBTGF} \\ \mbox{from } \emptyset \mbox{ 100 mm} & \mbox{TECAMID} \mbox{ 6 GF, 66, 66 MH} \end{array}$ 

Recommendation

Diameter of circular saw blade = 450 - 480 mm Circular saw tooth type = Alternating teeth Circular saw blades from hard metal. For reinforced materials a diamond-studded sawing blade is recommended for better tool life. Band saw blades from hard metal, well set.



α clearance angle [°] γ rake angle [°] V Cutting speed [rpm] S Feed rate [mm/r] Tangential feed Feed rate can be up to 0,5 mm / tooth



Heat before drilling in the centre:

from Ø 60 mm TECAPEEK GF/PVX, TECATRON GF/PVX from Ø 80 mm TECAMID 66 MH, 66 GF, TECAPET, TECADUR PBT GF from Ø 100 mm TECAMID 6 GF, 66, TECAM 6 MO, TECANYL GF

α clearance angle [°] γ rake angle [°]

side angle [°]

χ side angle [č] V Cutting speed [rpm] S Feed rate [mm/r]

The nose radius r must be at least 0,5 mm

|                                              | number<br>of teeth | cutting<br>speed | feed<br>rate |   | clearance<br>angle | rake<br>angle | side<br>angle | cutting<br>speed | feed<br>rate |   |
|----------------------------------------------|--------------------|------------------|--------------|---|--------------------|---------------|---------------|------------------|--------------|---|
| TECAFINE PE, PP                              | Z2 – Z4            | 250 - 500        | 0.1-0.45     |   | 6 - 10             | 0 - 5         | 45 - 60       | 250 - 500        | 0.1-0.5      |   |
| TECAFINE PMP                                 | Z2-Z4              | 250 - 500        | 0.1-0.45     |   | 6 - 10             | 0 – 5         | 45 - 60       | 250 - 500        | 0.1-0.5      |   |
| TECARAN ABS                                  | Z2 – Z4            | 300 - 500        | 0.1-0.45     |   | 5 - 15             | 25 - 30       | 15            | 200 - 500        | 0.2 - 0.5    |   |
| TECANYL                                      | Z2 – Z4            | 300              | 0.15 - 0.5   | • | 5 - 10             | 6 - 8         | 45 - 60       | 300              | 0.1-0.5      | • |
| TECAFORM AD, AH                              | Z2 – Z4            | 300              | 0.15 – 0.5   |   | 6 - 8              | 0 - 5         | 45 - 60       | 300 - 600        | 0.1-0.4      |   |
| TECAMID, TECARIM, TECAST                     | Z2-Z4              | 250 - 500        | 0.1-0.45     |   | 6 - 10             | 0 - 5         | 45 - 60       | 250 - 500        | 0.1-0.5      |   |
| TECADUR/TECAPET                              | Z2 – Z4            | 300              | 0.15 – 0.5   |   | 5 - 10             | 0 - 5         | 45-60         | 300-400          | 0.2-0.4      |   |
| TECANAT                                      | Z2 – Z4            | 300              | 0.15 - 0.4   | • | 5 - 10             | 6 - 8         | 45 - 60       | 300              | 0.1-0.5      | • |
| TECAFLON PTFE, PVDF                          | Z2 – Z4            | 150 - 500        | 0.1-0.45     |   | 5 - 10             | 5 - 8         | 10            | 150 - 500        | 0.1-0.3      |   |
| TECAPEI                                      | Z2 – Z4            | 250 - 500        | 0.1-0.45     | • | 10                 | 0             | 45 - 60       | 350 - 400        | 0.1-0.3      | • |
| TECASON S, P, E                              | Z2 – Z4            | 250 - 500        | 0.1-0.45     | • | 6                  | 0             | 45 - 60       | 350 - 400        | 0.1-0.3      | • |
| TECATRON                                     | Z2 – Z4            | 250 - 500        | 0.1-0.45     |   | 6                  | 0 - 5         | 45 - 60       | 250 - 500        | 0.1 - 0.5    |   |
| TECAPEEK                                     | Z2 – Z4            | 250 - 500        | 0.1-0.45     |   | 6 - 8              | 0 - 5         | 45 - 60       | 250 - 500        | 0.1-0.5      |   |
| TECATOR                                      | Z2 – Z4            | 60-100           | 0.05-0.35    |   | 6 - 8              | 0 - 5         | 7 – 10        | 100 - 120        | 0.05-0.08    |   |
| TECASINT                                     | Z2 – Z4            | 90-100           | 0.05 - 0.35  |   | 2 - 5              | 0 – 5         | 7–10          | 100 - 120        | 0.05-0.08    |   |
| Reinforced/filled TECA products <sup>*</sup> | Z2 – Z4            | 80 - 150         | 0.05 - 0.4   |   | 6 - 8              | 2 - 8         | 45-60         | 80 - 150         | 0.1-0.5      |   |

\* Reinforcing agents/fillers: Glass fibres, glass beads, carbon

fibres, graphite, mica, talcum, etc.

- Preheat material to 120 °C
- Caution when using coolants:

susceptible to stress cracking

#### Material standard values

| Material                                                        |                                     | TECASINT<br>8001<br>yellow-<br>brown | TECASINT<br>5051<br>grey-green | TECASINT<br>5201 SD<br>black      | TECASINT<br>4011<br>natural | TECASINT<br>4021<br>black | TECASINT<br>4111<br>natural | TECASINT<br>4121<br>black | TECASINT<br>2011<br>natural | TECASINT<br>2021<br>black | TECASINT<br>2031<br>black |
|-----------------------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------|-----------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|
| Polymer                                                         |                                     | PTFE                                 | PAI                            | PAI                               | PI                          | PI                        | PI                          | PI                        | PI                          | PI                        | PI                        |
| Fillers                                                         |                                     | 20%<br>polyimide                     | 30% glass<br>fibres            | carbon<br>fibres, glass<br>fibres |                             | 15%<br>graphite           |                             | 15%<br>graphite           |                             | 15%<br>graphite           | 40%<br>graphite           |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.88                                 | 1.57                           | 1.54                              | 1.41                        | 1.49                      | 1.46                        | 1.53                      | 1.38                        | 1.45                      | 1.59                      |
| Mechanical properties                                           |                                     |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               |                                      | 5,800                          | 4,500                             | 4,000                       | 4,943                     | 6,700                       | 6,600                     | 3,700                       | 4,400                     | 6,300                     |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 15                                   | 94                             | 85                                | 130                         | 93                        | 100                         | 34                        | 118                         | 101                       | 65                        |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 200                                  | 3.4                            | 4.0                               | 4.5                         | 3                         | 1.7                         | 0.5                       | 4.5                         | 3.7                       | 2.1                       |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               |                                      | 6,625                          | 4,200                             | 4,300                       | 4,930                     | 6,100                       | 6,100                     | 3,600                       | 4,300                     | 5,200                     |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               |                                      | 163                            | 135                               | 180                         | 131                       | 160                         | 113                       | 177                         | 145                       | 87,5                      |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               |                                      | 2,590                          |                                   | 2,100                       | 2,067                     | 2,500                       | 2,200                     | 1,713                       | 1,900                     | 2,027                     |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             |                                      | 27.3                           | 17.8                              | 87                          | 24.4                      | 24                          | 11                        | 87.9                        | 36.7                      | 14.2                      |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             |                                      | 5.1                            | 2.8                               | 9.6                         | 4.8                       | 1.1                         | 1.4                       | 9.3                         | 2.9                       | 3.3                       |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               |                                      | 360                            | 375                               | 265                         |                           | 345                         |                           | 260                         |                           |                           |
| Thermal properties                                              |                                     |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | -20                                  | 340                            | 340                               | 260                         | 260                       | n.a.                        | n.a.                      | 370                         | 370                       | 370                       |
| Melting temperature<br>(DIN 53765)                              | [°C]                                |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Service temperature,<br>short term                              | [°C]                                |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Service temperature,<br>long term                               | [°C]                                | 250                                  | 300                            | 300                               |                             |                           |                             |                           | -                           | -                         | -                         |
| Thermal expansion (CLTE),<br>23 - 60°C (DIN EN ISO 11359-1;2)   | [10 <sup>-5</sup> K <sup>-1</sup> ] |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Thermal expansion (CLTE),<br>23 – 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] |                                      | 3                              | 3                                 | 4                           |                           | 3                           |                           | 4                           |                           |                           |
| Specific heat<br>(ISO 22007-4:2008)                             | [J/(g×K)]                           | 1                                    |                                |                                   | 1.04                        |                           |                             |                           | 0.925                       |                           |                           |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           | 0.25                                 |                                |                                   | 0.4                         |                           | 0.35                        |                           | 0.22                        |                           |                           |
| Electrical properties                                           |                                     |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ŋ]                                 |                                      | 1014                           | 1011                              | 1016                        |                           | 1016                        |                           | 1015                        |                           |                           |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              | 1018                                 |                                |                                   | 1016                        |                           | 1016                        |                           | 1015                        |                           |                           |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Miscellaneous data                                              |                                     |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 |                                      | 0.12 / 0.27                    | 0.16 / 0.33                       | 0.02 / 0.06                 |                           | 0.01 / 0.02                 |                           | 0.14 / 0.30                 |                           |                           |
| Resistance<br>to hot water / bases                              |                                     |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Resistance to weathering                                        |                                     |                                      |                                |                                   |                             |                           |                             |                           |                             |                           |                           |
| Flammability (UL94)<br>(DIN IEC 60695-11-10)                    |                                     | VO                                   | VO                             | VO                                | VO                          | VO                        | VO                          | VO                        | VO                          | VO                        | VO                        |

Data generated directly after machining (standard climate Germany). For polyamides the values strongly depend on the humidity content.



- good resistance (+) limited resistance
- poor resistance (depending on concen--
- tration, time and temperature)
- **n.b.** not broken n.a. not applicable

- (a) Glass transition temperature testing according to DIN EN ISO 11357
- (b) Thermal conductivity testing according to ISO 8302
  - Thermal conductivity testing according to ASTM E 1530 (c)
  - (d) Surface resistance testing according to ASTM D 257
  - (e)
  - No listing at UL (yellow card). Thermal expansion (CLTE), 50 200 °C Specific surface resistance and volume resistance (f) (g)
  - testing according to DIN EN 61340-2-3
  - (h) Dielectric strength testing according to ASTM D 149 (i) Thermal expansion testing according to ASTM D 695

Test specimen to DIN EN ISO 527-2

Appendix

| Material                                                        |                                     | TECASINT<br>2391<br>black | TECASINT<br>1011<br>natural | TECASINT<br>1021<br>black | TECASINT<br>1031<br>black | TECASINT<br>1041<br>black | TECASINT<br>1061<br>black    | TECASINT<br>1101<br>natural | TECASINT<br>1611<br>brown | TECATOR<br>5013<br>natural | TECATOR<br>5031 PV<br>black |
|-----------------------------------------------------------------|-------------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|------------------------------|-----------------------------|---------------------------|----------------------------|-----------------------------|
| Polymer                                                         |                                     | PI                        | PI                          | PI                        | PI                        | PI                        | PI                           | PI                          | PI                        | PAI                        | PAI                         |
| Fillers                                                         |                                     | 15% MoS <sub>2</sub>      |                             | 15%<br>graphite           | 40%<br>graphite           | 30% MoS <sub>2</sub>      | 15%<br>graphite,<br>10% PTFE |                             | 30% PTFE                  |                            | graphite,<br>PTFE           |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1,54                      | 1,34                        | 1,42                      | 1,57                      | 1,67                      | 1,48                         | 1,34                        | 1,51                      | 1,4                        | 1,46                        |
| Mechanical properties                                           |                                     |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 4,400                     | 3,600                       | 4,000                     |                           | 4,340                     |                              | 4,000                       |                           | 3,800                      | 5,900                       |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 95                        | 116                         | 97                        | 65                        | 82                        | 77                           | 153                         | 82                        | 151                        | 135                         |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               |                           |                             |                           |                           |                           |                              |                             |                           | 151                        | 135                         |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 2.9                       | 3.8                         | 2.8                       | 2.2                       | 2.8                       | 2.9                          | 7.4                         | 4.1                       | 21                         | 7                           |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 4,136                     | 3,700                       | 4,000                     |                           | 4,330                     |                              | 4,000                       |                           | 3,900                      | 6,200                       |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 137                       | 170                         | 150                       | 88                        | 126                       | 120                          | 209                         | 122                       |                            |                             |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 2,200                     | 2,000                       | 1,880                     |                           |                           |                              | 4,000                       |                           |                            |                             |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             |                           | 75.8                        | 35.1                      | 16.5                      | 29.6                      | 25.8                         | 67.6                        | -                         |                            | 87                          |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             |                           | 5                           | 4.8                       | 3.6                       | 2.8                       | 3.9                          | -                           | -                         | 13.2                       | 5.6                         |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 265                       |                             |                           |                           |                           |                              |                             |                           | 240                        | 228                         |
| Thermal properties                                              |                                     |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | 370                       | 368                         | 330                       | 330                       | 330                       | 330                          | 330                         | 330                       | 280                        | 280                         |
| Melting temperature<br>(DIN 53765)                              | [°C]                                |                           |                             |                           |                           |                           |                              |                             |                           | n.a.                       | n.a.                        |
| Service temperature,<br>short term                              | [°C]                                |                           |                             |                           |                           |                           |                              |                             |                           | 270                        | 270                         |
| Service temperature,<br>long term                               | [°C]                                |                           | -                           | -                         | -                         | -                         | -                            | -                           | -                         | 250                        | 250                         |
| Thermal expansion (CLTE),<br>23 - 60 °C (DIN EN ISO 11359-1;2)  | [10 <sup>-5</sup> K <sup>-1</sup> ] |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Thermal expansion (CLTE),<br>23 – 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 4                         |                             |                           |                           |                           |                              |                             |                           | 4                          |                             |
| Specific heat<br>(ISO 22007-4:2008)                             | [J/(g×K)]                           |                           | 1.04                        | 1.13                      |                           |                           |                              | 1.04                        |                           |                            |                             |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           |                           | 0.22                        | 0.53                      |                           |                           |                              | 0.22                        |                           | 0.29                       | 0.60                        |
| Electrical properties                                           |                                     |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ω]                                 |                           | 1016                        | 107                       | 10 <sup>3</sup>           |                           |                              | 1015                        | 1016                      | 1018                       | 10 <sup>17</sup>            |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              |                           | 1017                        |                           |                           |                           |                              | 1017                        | 1017                      | 1015                       | 1013                        |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                           |                             |                           |                           |                           |                              | •                           |                           | 23                         |                             |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Miscellaneous data                                              |                                     |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.12 / 0.24               |                             |                           |                           |                           |                              |                             |                           | 0.06 / 0.13                |                             |
| Resistance                                                      |                                     |                           |                             |                           |                           |                           |                              |                             |                           | -                          | -                           |
| Resistance to weathering                                        |                                     |                           |                             |                           |                           |                           |                              |                             |                           |                            |                             |
| Flammability (UL94)<br>(DIN IEC 60695-11-10)                    |                                     | VO                        | VO                          | VO                        | VO                        | VO                        | VO                           | VO                          | VO                        | VO                         | VO                          |

The corresponding values and information are no minimum or maximum values, but guideline values that can be used primarily for comparison purposes for material selection. These values are within the normal tolerance range of product properties and do not represent guaranteed property values. Therefore they shall not be used for specification purposes. Unless otherwise noted, these values were determined by tests at reference dimensions (typically rods with diameter 40-60 mm according to DIN EN 15860) on extruded, cast, compression moulded and machined specimens. As the properties depend on the dimensions of the semi-finished products and the orientation in the component (esp. in reinforced grades), the material may not be used without separate testing under individual circumstances. Data sheet values are subject to periodic review, the most recent update can be found at www.ensinger-online.com

Technical changes reserved.

#### Material standard values

| Material                                                        |                                     | TECAPEEK<br>natural | TECAPEEK<br>black | TECAPEEK<br>bright red | TECAPEEK<br>GF30<br>natural | TECAPEEK<br>CF30<br>black | TECAPEEK<br>PVX<br>black            | TECAPEEK<br>ELS nano<br>black | TECAPEEK<br>ID<br>blue | TECAPEEK<br>TF10<br>blue | TECAPEEK<br>MT<br>natural |
|-----------------------------------------------------------------|-------------------------------------|---------------------|-------------------|------------------------|-----------------------------|---------------------------|-------------------------------------|-------------------------------|------------------------|--------------------------|---------------------------|
| Polymer                                                         |                                     | PEEK                | PEEK              | PEEK                   | PEEK                        | PEEK                      | PEEK                                | PEEK                          | PEEK                   | PEEK                     | PEEK                      |
| Fillers                                                         |                                     |                     |                   |                        | glass fibres                | carbon<br>fibres          | carbon<br>fibres, PTFE,<br>graphite | CNT                           | detectable<br>filler   | PTFE                     |                           |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.31                | 1.31              | 1.36                   | 1.53                        | 1.38                      | 1.44                                | 1.36                          | 1.49                   | 1.38                     | 1.31                      |
| Mechanical properties                                           |                                     |                     |                   |                        |                             |                           |                                     |                               |                        |                          |                           |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 4,200               | 4,100             | 4,200                  | 6,400                       | 6,800                     | 5,500                               | 4,800                         | 4,600                  | 3,400                    | 4,200                     |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 116                 | 100               | 108                    | 105                         | 122                       | 84                                  | 106                           | 111                    | 95                       | 116                       |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               | 116                 | 100               | 108                    | 105                         | 122                       | 84                                  | 106                           | 111                    | 95                       | 116                       |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 | 5                   | 3                 | 4                      | 3                           | 7                         | 3                                   | 4                             | 4                      | 5                        | 5                         |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 15                  | 3                 | 6                      | 3                           | 7                         | 3                                   | 4                             | 6                      | 8                        | 15                        |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 4,200               | 4,100             | 4,500                  | 6,600                       | 6,800                     | 6,000                               | 4,700                         | 3,700                  | 3,900                    | 4,200                     |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 175                 | 171               | 177                    | 164                         | 193                       | 142                                 | 178                           | 166                    | 149                      | 175                       |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 3,400               | 3,300             | 3,500                  | 4,800                       | 5,000                     | 4,000                               | 3,600                         | 4,800                  | 3,000                    | 3,400                     |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               | 23 / 43             | 22 / 41           | 22 / 40                | 29 / 52                     | 25 / 47                   | 23 / 44                             | 27 / 47                       | 25 / 46                | 22 / 39                  | 23 / 43                   |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             | n.b.                | 75                | 50                     | 33                          | 62                        | 28                                  | 58                            | 72                     | 48                       | n.b.                      |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             | 4                   |                   |                        |                             |                           |                                     |                               |                        |                          | 4                         |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 253                 | 253               | 244                    | 316                         | 355                       | 250                                 | 253                           | 260                    | 220                      | 253                       |
| Thermal properties                                              |                                     |                     |                   |                        |                             |                           |                                     |                               |                        |                          |                           |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | 150                 | 151               | 151                    | 147                         | 147                       | 146                                 | 147                           | 150                    | 157                      | 150                       |
| Melting temperature<br>(DIN 53765)                              | [°C]                                | 341                 | 341               | 341                    | 341                         | 341                       | 341                                 | 341                           | 341                    | 340                      | 342                       |
| Service temperature,<br>short term                              | [°C]                                | 300                 | 300               | 300                    | 300                         | 300                       | 300                                 | 300                           | 300                    | 300                      | 300                       |
| Service temperature,<br>long term                               | [°C]                                | 260                 | 260               | 260                    | 260                         | 260                       | 260                                 | 260                           | 260                    | 260                      | 260                       |
| Thermal expansion (CLTE),<br>23 – 60 °C (DIN EN ISO 11359-1;2)  | [10 <sup>-5</sup> K <sup>-1</sup> ] | 5                   | 5                 | 5                      | 4                           | 4                         | 3                                   | 5                             | 5                      | 6                        | 5                         |
| Thermal expansion (CLTE),<br>23 – 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 5                   | 5                 | 5                      | 4                           | 4                         | 3                                   | 5                             | 5                      | 6                        | 5                         |
| Specific heat<br>(ISO 22007-4:2008)                             | [J/(g×K)]                           | 1.1                 | 1.1               | 1.1                    | 1.0                         | 1.2                       | 1.1                                 | 1.1                           | 1.1                    |                          | 1.1                       |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           | 0.27                | 0.30              | 0.27                   | 0.35                        | 0.66                      | 0.82                                | 0.46                          | 0.27                   |                          | 0.27                      |
| Electrical properties                                           |                                     |                     |                   |                        |                             |                           |                                     |                               |                        |                          |                           |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ŋ]                                 | 1015                | 1012              | 1014                   | 1014                        | 10 <sup>8</sup>           | 1011                                | 10 <sup>4</sup>               | 1014                   | 1014                     | 1014                      |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              | 1015                |                   | 1014                   | 1014                        | 1011                      | 1012                                | 10 <sup>5</sup>               | 1014                   | 1014                     | 1014                      |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             | 73                  |                   | •                      | 36                          | •                         |                                     |                               |                        | •                        |                           |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 | 125                 |                   |                        |                             |                           |                                     |                               |                        |                          |                           |
| Miscellaneous data                                              |                                     |                     |                   |                        |                             |                           |                                     |                               |                        |                          |                           |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.02 / 0.03         | 0.02 / 0.03       | 0.02 / 0.03            | 0.02 / 0.03                 | 0.02 / 0.03               | 0.02 / 0.03                         | 0.02 / 0.03                   | 0.02 / 0.03            | 0.02 / 0.03              | 0.02 / 0.03               |
| Resistance<br>to hot water / bases                              |                                     | +                   | +                 | +                      | +                           | +                         | +                                   | +                             | +                      | +                        | +                         |
| Resistance to weathering                                        |                                     | -                   | -                 | -                      | -                           | -                         | -                                   | (+)                           | -                      | -                        | -                         |
| Flammability (UL94)                                             |                                     | VO                  | VO                | VO                     | VO                          | VO                        | VO                                  | VO                            | VO                     | VO                       | VO                        |

Data generated directly after machining (standard climate Germany). For polyamides the values strongly depend on the humidity content.



good resistance (+) limited resistance

poor resistance (depending on concen--

tration, time and temperature)

**n.b.** not broken

n.a. not applicable

- (a) Glass transition temperature testing according to DIN EN ISO 11357
- (b) Thermal conductivity testing according to ISO 8302
  - Thermal conductivity testing according to ASTM E 1530 (c)
  - Surface resistance testing according to ASTM D 257 (d)
  - (e)
  - (f)
  - No listing at UL (yellow card). Thermal expansion (CLTE), 50 200 °C Specific surface resistance and volume resistance (g)
  - testing according to DIN EN 61340-2-3 (h) Dielectric strength testing according to ASTM D 149
  - (i) Thermal expansion testing according to ASTM D 695

Test specimen to DIN EN ISO 527-2

98

Appendix

| Material                                                        |                                     | TECAPEEK<br>MT<br>black | TECAPEEK<br>MT<br>blue | TECAPEEK<br>MT<br>green | TECAPEEK<br>MT<br>yellow | TECAPEEK<br>MT<br>bright red | TECAPEEK<br>MT<br>ivory | TECAPEEK<br>MT CF30<br>black | TECATEC<br>PEEK MT<br>CW50<br>black | TECATEC<br>PEKK MT<br>CW60<br>black | TECAPEEK<br>MT CLASSIX<br>white |
|-----------------------------------------------------------------|-------------------------------------|-------------------------|------------------------|-------------------------|--------------------------|------------------------------|-------------------------|------------------------------|-------------------------------------|-------------------------------------|---------------------------------|
| Polymer                                                         |                                     | PEEK                    | PEEK                   | PEEK                    | PEEK                     | PEEK                         | PEEK                    | PEEK                         | PEEK                                | PEKK                                | PEEK                            |
| Fillers                                                         |                                     |                         |                        |                         |                          |                              |                         | carbon<br>fibres             |                                     |                                     |                                 |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.31                    | 1.34                   | 1.32                    | 1.38                     | 1.36                         | 1.42                    | 1.42                         | 1.49                                | 1.61                                | 1.4                             |
| Mechanical properties                                           |                                     |                         |                        |                         |                          |                              |                         |                              |                                     |                                     |                                 |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 4,200                   | 4,300                  | 4,100                   | 4,400                    | 4,200                        | 4,400                   | 6,000                        | 53,200                              | 54,300                              | 4,700                           |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 114                     | 113                    | 116                     | 113                      | 108                          | 114                     | 115                          | 491                                 | 585                                 | 117                             |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               | 114                     | 113                    | 116                     | 113                      | 108                          | 114                     | 115                          |                                     |                                     | 117                             |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 | 5                       | 5                      | 5                       | 5                        | 4                            | 4                       | 5                            |                                     |                                     | 5                               |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 13                      | 11                     | 17                      | 10                       | 6                            | 12                      | 5                            |                                     |                                     | 11                              |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 4,100                   | 4,300                  | 4,200                   | 4,300                    | 4,500                        | 4,400                   | 6,000                        | 48,900                              | 50,900                              | 4,400                           |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 171                     | 173                    | 172                     | 169                      | 177                          | 171                     | 188                          | 813                                 | 960                                 | 177                             |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 3,400                   | 3,400                  | 3,400                   | 3,400                    | 3,500                        | 3,400                   | 4,500                        | 4,050                               | 5,100                               | 3,500                           |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               | 23 / 44                 | 17 / 35                | 17 / 35                 | 17 / 35                  | 22 / 40                      | 24 / 44                 | 23 / 44                      |                                     |                                     | 25 / 45                         |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             | n.b.                    | n.b.                   | n.b.                    | n.b.                     | 50                           | n.b.                    | 58                           |                                     |                                     | n.b.                            |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             | 5                       | 7                      | 4                       | 5                        |                              | 4                       |                              |                                     |                                     | 5                               |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 243                     | 248                    | 250                     | 257                      | 244                          | 250                     | 318                          |                                     |                                     | 263                             |
| Thermal properties                                              |                                     |                         |                        |                         |                          |                              |                         |                              |                                     |                                     |                                 |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | 151                     | 151                    | 151                     | 151                      | 151                          | 150                     | 146                          | 143                                 | 165                                 | 150                             |
| Melting temperature<br>(DIN 53765)                              | [°C]                                | 341                     | 341                    | 341                     | 341                      | 341                          | 340                     | 341                          | 343                                 | 380                                 | 341                             |
| Service temperature,<br>short term                              | [°C]                                | 300                     | 300                    | 300                     | 300                      | 300                          | 300                     | 300                          |                                     |                                     | 300                             |
| Service temperature,<br>long term                               | [°C]                                | 260                     | 260                    | 260                     | 260                      | 260                          | 260                     | 260                          | 260                                 | 260                                 | 260                             |
| Thermal expansion (CLTE),<br>23 – 60 °C (DIN EN ISO 11359-1;2)  | [10 <sup>-5</sup> K <sup>-1</sup> ] | 5                       | 5                      | 5                       | 5                        | 5                            | 5                       | 5                            |                                     |                                     | 5                               |
| Thermal expansion (CLTE),<br>23 - 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 5                       | 5                      | 5                       | 5                        | 5                            | 5                       | 5                            |                                     |                                     | 5                               |
| Specific heat<br>(ISO 22007-4:2008)                             | [J/(g×K)]                           | 1.1                     | 1.1                    | 1.1                     | 1.1                      | 1.1                          |                         | 1.7                          |                                     |                                     | 1.0                             |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           | 0.3                     | 0.28                   | 0.28                    | 0.28                     | 0.27                         |                         | 0.59                         |                                     |                                     | 0.30                            |
| Electrical properties                                           |                                     |                         |                        |                         |                          |                              |                         |                              |                                     |                                     |                                 |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ω]                                 | 1014                    | 1014                   | 1014                    | 1014                     | 1014                         | 1014                    | 1010                         |                                     |                                     | 1014                            |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              | 1014                    | 1014                   | 1014                    | 1014                     |                              | 1014                    | 1011                         |                                     |                                     | 1014                            |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                         |                        |                         |                          |                              |                         |                              |                                     |                                     |                                 |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                         |                        |                         |                          |                              |                         |                              |                                     |                                     |                                 |
| Miscellaneous data                                              |                                     |                         |                        |                         |                          |                              |                         |                              |                                     |                                     |                                 |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.02 / 0.03             | 0.02 / 0.03            | 0.02 / 0.03             | 0.02 / 0.03              | 0.02 / 0.03                  | 0.02 / 0.03             | 0.02 / 0.03                  |                                     |                                     | 0.02 / 0.03                     |
| Resistance<br>to hot water / bases                              | ••••                                | +                       | +                      | +                       | +                        | +                            | +                       | +                            | +                                   | +                                   | +                               |
| Resistance to weathering                                        |                                     | -                       | -                      | -                       | -                        | -                            | -                       | -                            | -                                   | -                                   | -                               |
| Flammability (UL94)<br>(DIN IEC 60695-11-10)                    |                                     | VO                      | VO                     | VO                      | VO                       | VO                           | VO                      | VO                           | VO                                  | VO                                  | VO                              |

The corresponding values and information are no minimum or maximum values, but guideline values that can be used primarily for comparison purposes for material selection. These values are within the normal tolerance range of product properties and do not represent guaranteed property values. Therefore they shall not be used for specification purposes. Unless otherwise noted, these values were determined by tests at reference dimensions (typically rods with diameter 40-60 mm according to DIN EN 15860) on extruded, cast, compression moulded and machined specimens. As the properties depend on the dimensions of the semi-finished products and the orientation in the component (esp. in reinforced grades), the material may not be used without separate testing under individual circumstances. Data sheet values are subject to periodic review, the most recent update can be found at www.ensinger-online.com

Technical changes reserved.

#### Material standard values

| Material                                                        |                                     | TECAPEEK<br>TS<br>grey | TECAPEEK<br>CMF<br>white | TECAPEEK<br>CMF<br>grey | TECAPEEK<br>HT<br>black | TECAPEEK<br>ST<br>black | TECATRON<br>natural | TECATRON<br>GF40<br>natural | TECATRON<br>GF40<br>black | TECATRON<br>PVX<br>black            | TECASON S<br>natural |
|-----------------------------------------------------------------|-------------------------------------|------------------------|--------------------------|-------------------------|-------------------------|-------------------------|---------------------|-----------------------------|---------------------------|-------------------------------------|----------------------|
| Polymer                                                         |                                     | PEEK                   | PEEK                     | PEEK                    | PEK                     | РЕКЕКК                  | PPS                 | PPS                         | PPS                       | PPS                                 | PSU                  |
| Fillers                                                         |                                     | mineral<br>filler      | ceramic                  | ceramic                 |                         |                         |                     | glass fibres                | glass fibres              | carbon<br>fibres, PTFE,<br>graphite |                      |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.49                   | 1.65                     | 1.65                    | 1.31                    | 1.32                    | 1.36                | 1.63                        | 1.63                      | 1.5                                 | 1.24                 |
| Mechanical properties                                           |                                     |                        |                          |                         |                         |                         |                     |                             |                           |                                     |                      |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 5,700                  | 5,500                    | 5,500                   | 4,600                   | 4,600                   | 4,100               | 6,500                       | 6,500                     | 4,600                               | 2,700                |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 110                    | 105                      | 105                     | 120                     | 134                     | 102                 | 83                          | 83                        | 53                                  | 89                   |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               | 110                    | 102                      | 102                     | 120                     | 134                     | 100                 | 83                          | 83                        | 53                                  | 89                   |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 | 4                      | 3                        | 4                       | 4                       | 5                       | 4                   | 3                           | 3                         | 2                                   | 5                    |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 4                      | 4                        | 5                       | 5                       | 13                      | 4                   | 3                           | 3                         | 2                                   | 15                   |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 5,900                  | 5,500                    | 5,500                   | 4,600                   | 4,600                   | 4,000               | 6,600                       | 6,600                     | 4,800                               | 2,600                |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 175                    | 170                      | 170                     | 192                     | 193                     | 151                 | 145                         | 145                       | 91                                  | 122                  |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 4,300                  | 4,300                    | 4,300                   | 3,500                   | 3,500                   | 3,300               | 4,600                       | 4,600                     | 3,300                               | 2,300                |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               | 17 / 34                | 25 / 46                  | 25 / 46                 | 25 / 45                 | 24 / 42                 | 20 / 38             | 21 / 41                     | 21 / 41                   | 19/36                               | 15 / 28              |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             | n.b.                   | 65                       | 35                      | n.b.                    | n.b.                    | 29                  | 24                          | 24                        | 14                                  | 175                  |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             | 7                      |                          |                         | 4                       | 4                       |                     |                             |                           |                                     | 4                    |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 290                    | 286                      | 286                     | 282                     | 275                     | 248                 | 333                         | 343                       | 238                                 | 167                  |
| Thermal properties                                              |                                     |                        |                          |                         |                         |                         |                     |                             |                           |                                     |                      |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | 151                    | 151                      | 151                     | 160                     | 165                     | 97                  | 93                          | 93                        | 94                                  | 188                  |
| Melting temperature<br>(DIN 53765)                              | [°C]                                | 339                    | 339                      | 339                     | 375                     | 384                     | 281                 | 280                         | 280                       | 281                                 | n.a.                 |
| Service temperature,<br>short term                              | [°C]                                | 300                    | 300                      | 300                     | 300                     | 300                     | 260                 | 260                         | 260                       | 260                                 | 180                  |
| Service temperature,<br>long term                               | [°C]                                | 260                    | 260                      | 260                     | 260                     | 260                     | 230                 | 230                         | 230                       | 230                                 | 160                  |
| Thermal expansion (CLTE),<br>23 – 60 °C (DIN EN ISO 11359-1;2)  | [10 <sup>-5</sup> K <sup>-1</sup> ] | 4                      | 5                        | 5                       | 5                       | 5                       | 6                   | 4                           | 4                         | 5                                   | 6                    |
| Thermal expansion (CLTE),<br>23 – 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 4                      | 5                        | 5                       | 5                       | 5                       | 7                   | 5                           | 5                         | 6                                   | 6                    |
| Specific heat<br>(ISO 22007-4:2008)                             | []/(g×K)]                           |                        | 1.0                      | 1.0                     |                         |                         | 1.0                 | 1.0                         | 0.9                       | 0.9                                 | 1.2                  |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           |                        | 0.38                     | 0.38                    |                         |                         | 0.25                | 0.35                        | 0.33                      | 0.58                                | 0.21                 |
| Electrical properties                                           |                                     |                        |                          |                         |                         |                         |                     |                             |                           |                                     |                      |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ω]                                 | 1014                   | 1014                     | 1014                    | 1014                    | 1014                    | 1014                | 1014                        | 1014                      | 10 <sup>10</sup>                    | 1014                 |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              | 1014                   | 1014                     | 1014                    | 1014                    |                         | 1014                | 1014                        | 1014                      | 1012                                | 1014                 |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                        | 57                       |                         | 62                      |                         |                     |                             | 32                        |                                     |                      |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                        | 175                      |                         | 200                     |                         |                     |                             | 125                       |                                     |                      |
| Miscellaneous data                                              |                                     |                        |                          |                         |                         |                         |                     |                             |                           |                                     |                      |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.02 / 0.03            | 0.02 / 0.03              | 0.02 / 0.03             | 0.02 / 0.04             | 0.02 / 0.03             | <0.01 / 0.01        | <0.01 / 0.01                | <0.01 / 0.01              | <0.01/<0.01                         | 0.06 / 0.1           |
| Resistance<br>to hot water / bases                              |                                     | +                      | +                        | +                       | +                       | +                       | +                   | +                           | +                         | +                                   | +                    |
| Resistance to weathering                                        | ••••                                | -                      | -                        | -                       | (+)                     | (+)                     | -                   | -                           | (+)                       | (+)                                 | -                    |
| Flammability (UL94)<br>(DIN IEC 60695-11-10)                    |                                     | VO                     | VO                       | VO                      | VO                      | VO                      | VO                  | VO                          | VO                        | VO                                  | VO                   |

Data generated directly after machining (standard climate Germany). For polyamides the values strongly depend on the humidity content.



Test specimen to DIN EN ISO 527-2

- good resistance (+) limited resistance
- poor resistance (depending on concen--
- tration, time and temperature)
- **n.b.** not broken
- n.a. not applicable

- (a) Glass transition temperature testing according to DIN EN ISO 11357
- (b) Thermal conductivity testing according to ISO 8302
  - Thermal conductivity testing according to ASTM E 1530 (c)
  - (d) Surface resistance testing according to ASTM D 257
  - (e)
  - (f)
  - No listing at UL (yellow card). Thermal expansion (CLTE), 50 200 °C Specific surface resistance and volume resistance (g) testing according to DIN EN 61340-2-3
  - (h) Dielectric strength testing according to ASTM D 149
  - (i) Thermal expansion testing according to ASTM D 695

| Material                                                        |                                     | TECASON P<br>white | TECASON P<br>MT | TECAPEI<br>natural | TECAFLON<br>PVDF<br>natural | TECANAT<br>natural | TECANAT<br>GF30<br>natural | TECAPET<br>white | TECAPET<br>black | TECAPET TF<br>grey | TECADUR<br>PET<br>natural |
|-----------------------------------------------------------------|-------------------------------------|--------------------|-----------------|--------------------|-----------------------------|--------------------|----------------------------|------------------|------------------|--------------------|---------------------------|
| Polymer                                                         | ••••                                | PPSU               | PPSU            | PEI                | PVDF                        | PC                 | PC                         | PET              | PET              | PET                | PET                       |
| Fillers                                                         |                                     |                    |                 |                    |                             | ••••••             | glass fibres               |                  |                  | solid<br>lubricant |                           |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.31               | 1.31            | 1.28               | 1.78                        | 1.19               | 1.42                       | 1.36             | 1.39             | 1.43               | 1.39                      |
| Mechanical properties                                           |                                     |                    |                 |                    |                             |                    |                            |                  |                  |                    |                           |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 2,300              | 2,300           | 3,200              | 2,200                       | 2,200              | 4,400                      | 3,100            | 3,400            | 3,200              | 3,300                     |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 81                 | 81              | 127                | 62                          | 69                 | 85                         | 79               | 91               | 78                 | 91                        |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               | 81                 | 81              | 127                | 62                          | 69                 | 87                         | 79               | 91               | 78                 | 91                        |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 | 7                  | 7               | 7                  | 8                           | 6                  | 4                          | 5                | 4                | 4                  | 4                         |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 50                 | 50              | 35                 | 17                          | 90                 | 6                          | 10               | 15               | 6                  | 14                        |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 2,300              | 2,300           | 3,300              | 2,100                       | 2,300              | 4,500                      | 3,200            | 3,400            | 3,300              | 3,400                     |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 107                | 107             | 164                | 77                          | 97                 | 138                        | 121              | 134              | 119                | 134                       |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 2,000              | 2,000           | 2,800              | 1,900                       | 2,000              | 3,300                      | 2,700            | 2,800            | 2,700              | 2,800                     |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               | 18 / 30            | 18 / 30         | 23 / 41            | 16 / 28                     | 16/29              | 21 / 39                    | 19/35            | 19/36            | 21 / 38            | 21 / 38                   |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             | n.b.               | n.b.            | 113                | 150                         | n.b.               | 71                         | 81               | 27               | 42                 | 150                       |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             | 13                 | 13              |                    |                             | 14                 |                            | 4                |                  |                    |                           |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 143                | 143             | 225                | 129                         | 128                | 190                        | 175              | 195              | 183                | 194                       |
| Thermal properties                                              |                                     |                    |                 |                    |                             |                    |                            |                  |                  |                    |                           |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | 218                | 218             | 216                | -40                         | 149                | 147                        | 81               | 81               | 82                 | 81                        |
| Melting temperature<br>(DIN 53765)                              | [°C]                                | n.a.               | n.a.            | n.a.               | 171                         | n.a.               | n.a.                       | 244              | 244              | 249                | 244                       |
| Service temperature,<br>short term                              | [°C]                                | 190                | 190             | 200                | 150                         | 140                | 140                        | 170              | 170              | 170                | 170                       |
| Service temperature,<br>long term                               | [°C]                                | 170                | 170             | 170                | 150                         | 120                | 120                        | 110              | 110              | 110                | 110                       |
| Thermal expansion (CLTE),<br>23 – 60 °C (DIN EN ISO 11359-1;2)  | [10 <sup>-5</sup> K <sup>-1</sup> ] | 6                  | 6               | 5                  | 16                          | 8                  | 5                          | 8                | 8                | 8                  | 8                         |
| Thermal expansion (CLTE),<br>23 - 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 6                  | 6               | 5                  | 18                          | 8                  | 5                          | 10               | 10               | 10                 | 10                        |
| Specific heat<br>(ISO 22007-4:2008)                             | [J/(g×K)]                           | 1.1                | 1.1             | 1.2                | 1.3                         | 1.3                | 1.1                        |                  |                  |                    |                           |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           | 0.25               | 0.25            | 0.21               | 0.25                        | 0.25               | 0.32                       |                  |                  |                    |                           |
| Electrical properties                                           |                                     |                    |                 |                    |                             |                    |                            |                  |                  |                    |                           |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ω]                                 | 1014               | 1014            | 1014               | 1014                        | 1014               | 1014                       | 1014             | 1014             | 1014               | 1014                      |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              |                    | 1014            | 1014               |                             | 1014               | 1014                       | 1014             | 1014             | 1014               | 1014                      |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                    | 76              |                    |                             | •                  |                            |                  |                  |                    |                           |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                    | 125             |                    |                             |                    |                            | 600              |                  |                    |                           |
| Miscellaneous data                                              |                                     |                    |                 |                    |                             |                    |                            |                  |                  |                    |                           |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.1 / 0.2          | 0.1 / 0.2       | 0.05 / 0.1         | <0.01/<0.01                 | 0.03 / 0.06        | 0.03 / 0.05                | 0.02 / 0.03      | 0.02 / 0.03      | 0.02 / 0.03        | 0.02 / 0.03               |
| Resistance<br>to hot water / bases                              |                                     | +                  | +               | +                  | +                           | -                  | -                          | -                | -                | -                  | -                         |
| Resistance to weathering                                        |                                     | -                  | (+)             | -                  | +                           | (+)                | -                          | -                | (+)              | -                  | -                         |
| Flammability (UL94)<br>(DIN IEC 60695-11-10)                    |                                     | VO                 | VO              | VO                 | VO                          | НВ                 | НВ                         | НВ               | НВ               | НВ                 | НВ                        |

The corresponding values and information are no minimum or maximum values, but guideline values that can be used primarily for comparison purposes for material selection. These values are within the normal tolerance range of product properties and do not represent guaranteed property values. Therefore they shall not be used for specification purposes. Unless otherwise noted, these values were determined by tests at reference dimensions (typically rods with diameter 40-60 mm according to DIN EN 15860) on extruded, cast, compression moulded and machined specimens. As the properties depend on the dimensions of the semi-finished products and the orientation in the component (esp. in reinforced grades), the material may not be used without separate testing under individual circumstances. Data sheet values are subject to periodic review, the most recent update can be found at www.ensinger-online.com

Technical changes reserved.

#### Material standard values

| Material                                                        |                                     | TECADUR<br>PBT GF30<br>natural | TECAMID 6<br>natural | TECAMID 6<br>MO<br>black | TECAMID 6<br>GF25<br>black | TECAMID 6<br>GF30<br>black | TECAMID 6<br>ID blue | TECAMID<br>66 natural | TECAMID<br>66 MO<br>black | TECAMID<br>66 GF30<br>black | TECAMID<br>66/X GF50<br>black |
|-----------------------------------------------------------------|-------------------------------------|--------------------------------|----------------------|--------------------------|----------------------------|----------------------------|----------------------|-----------------------|---------------------------|-----------------------------|-------------------------------|
| Polymer                                                         |                                     | PBT                            | PA 6                 | PA 6                     | PA 6                       | PA 6                       | PA 6                 | PA 66                 | PA 66                     | PA 66                       | PA 66                         |
| Fillers                                                         |                                     | glass fibres                   |                      | MoS <sub>2</sub>         | glass fibres               | glass fibres               | detectable<br>filler |                       | MoS <sub>2</sub>          | glass fibres                | glass fibres                  |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.46                           | 1.14                 | 1.14                     | 1.33                       | 1.36                       | 1.24                 | 1.15                  | 1.15                      | 1.34                        | 1.61                          |
| Mechanical properties                                           |                                     |                                |                      |                          |                            |                            |                      |                       |                           |                             |                               |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 3,400                          | 3,300                | 3,300                    | 5,100                      | 5,700                      | 3,600                | 3,500                 | 3,200                     | 5,500                       | 8,700                         |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 46                             | 79                   | 84                       | 96                         | 98                         | 80                   | 85                    | 84                        | 91                          | 115                           |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               | 46                             | 78                   | 82                       | 96                         | 98                         | 80                   | 84                    | 83                        | 91                          | 115                           |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 | 5                              | 4                    | 5                        | 9                          | 4                          | 4                    | 7                     | 10                        | 8                           | 2                             |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 6                              | 130                  | 37                       | 11                         | 5                          | 21                   | 70                    | 40                        | 14                          | 2                             |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 3,400                          | 2,900                | 3,100                    | 4,900                      | 5,200                      |                      | 3,100                 | 3,100                     | 4,700                       | 9,000                         |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 78                             | 100                  | 110                      | 143                        | 140                        |                      | 110                   | 114                       | 135                         | 200                           |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 2,800                          | 2,700                | 2,900                    | 3,900                      | 4,200                      |                      | 2,700                 | 2,700                     | 4,100                       | 6,200                         |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               | 20 / 38                        | 24 / 41              | 17 / 32                  | 21 / 42                    | 21 / 42                    |                      | 20 / 35               | 20 / 38                   | 25 / 46                     | 28 / 56                       |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             | 37                             | n.b.                 | n.b.                     | 78                         | 60                         | n.b.                 | n.b.                  | n.b.                      | 97                          |                               |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             |                                | 7                    | 5                        |                            |                            | 4                    | 5                     | 5                         |                             |                               |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 190                            | 155                  | 160                      | 230                        | 232                        |                      | 175                   | 168                       | 216                         |                               |
| Thermal properties                                              |                                     |                                |                      |                          |                            |                            |                      |                       |                           |                             |                               |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                |                                | 45                   | 51                       | 49                         | 49                         | 45                   | 47                    | 52                        | 48                          | 78                            |
| Melting temperature<br>(DIN 53765)                              | [°C]                                | 224                            | 221                  | 220                      | 217                        | 218                        | 220                  | 258                   | 253                       | 254                         | 256                           |
| Service temperature,<br>short term                              | [°C]                                | 200                            | 160                  | 160                      | 180                        | 180                        | 160                  | 170                   | 170                       | 170                         | 200                           |
| Service temperature,<br>long term                               | [°C]                                | 110                            | 100                  | 100                      | 100                        | 100                        | 100                  | 100                   | 100                       | 110                         | 130                           |
| Thermal expansion (CLTE),<br>23 - 60°C (DIN EN ISO 11359-1;2)   | [10 <sup>-5</sup> K <sup>-1</sup> ] | 8                              | 12                   | 8                        | 7                          | 6                          |                      | 11                    | 10                        | 5                           | 4                             |
| Thermal expansion (CLTE),<br>23 – 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 10                             | 13                   | 8                        | 8                          | 6                          |                      | 12                    | 10                        | 5                           | 5                             |
| Specific heat<br>(ISO 22007-4:2008)                             | [J/(g×K)]                           | 1.2                            | 1.6                  | 1.6                      | 1.4                        | 1.3                        |                      | 1.5                   | 1.5                       | 1.2                         |                               |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           | 0.33                           | 0.37                 | 0.37                     | 0.40                       | 0.41                       |                      | 0.36                  | 0.36                      | 0.39                        |                               |
| Electrical properties                                           |                                     |                                |                      |                          |                            |                            |                      |                       |                           |                             |                               |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ω]                                 | 1014                           | 1014                 | 1014                     | 1014                       | 1014                       | 10 <sup>13</sup>     | 1014                  | 1014                      | 1014                        | 1014                          |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              |                                | 1014                 | 1014                     | 1014                       | 1014                       |                      | 1014                  | 1014                      | 1014                        | 1014                          |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                                | 31                   | 30                       |                            | 32                         |                      |                       | 35                        | 35                          |                               |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                                | 600                  | 600                      |                            | 475                        |                      |                       | 600                       | 475                         |                               |
| Miscellaneous data                                              |                                     |                                |                      |                          |                            |                            |                      |                       |                           |                             |                               |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.02 / 0.04                    | 0.3 / 0.6            | 0.3 / 0.6                | 0.2 / 0.3                  | 0.2 / 0.3                  | 0.3 / 0.6            | 0.2 / 0.4             | 0.2 / 0.4                 | 0.1 / 0.2                   | 0.1 / 0.2                     |
| Resistance                                                      | -                                   | -                              | (+)                  | (+)                      | (+)                        | (+)                        | (+)                  | (+)                   | (+)                       | (+)                         | -                             |
| Resistance to weathering                                        |                                     | -                              | -                    | (+)                      | (+)                        | (+)                        | -                    | -                     | (+)                       | (+)                         | (+)                           |
| Flammability (UL94)<br>(DIN IEC 60695-11-10)                    |                                     | НВ                             | НВ                   | НВ                       | НВ                         | НВ                         | НВ                   | НВ                    | НВ                        | НВ                          | НВ                            |

Data generated directly after machining (standard climate Germany). For polyamides the values strongly depend on the humidity content.



Test specimen to DIN EN ISO 527-2

good resistance (+) limited resistance

poor resistance (depending on concen--

tration, time and temperature)

**n.b.** not broken

n.a. not applicable

(a) Glass transition temperature testing according to DIN EN ISO 11357

- (b) Thermal conductivity testing according to ISO 8302
  - Thermal conductivity testing according to ASTM E 1530 (c)
  - (d) Surface resistance testing according to ASTM D 257

(e)

(f)

No listing at UL (yellow card). Thermal expansion (CLTE), 50 – 200 °C Specific surface resistance and volume resistance (g) testing according to DIN EN 61340-2-3

(h) Dielectric strength testing according to ASTM D 149

(i) Thermal expansion testing according to ASTM D 695

Appendix

| Material                                                        |                                     | TECAMID<br>66 CF20<br>black | TECAMID<br>66 HI<br>brown | TECAMID<br>66 LA<br>natural | TECAMID<br>46 red<br>brown | TECAMID<br>12 natural | TECAST T<br>natural | TECAST T<br>MO black | TECAST L<br>natural | TECAST L<br>black | TECAST L<br>yellow |
|-----------------------------------------------------------------|-------------------------------------|-----------------------------|---------------------------|-----------------------------|----------------------------|-----------------------|---------------------|----------------------|---------------------|-------------------|--------------------|
| Polymer                                                         |                                     | PA 66                       | PA 66                     | PA 66                       | PA 46                      | PA 12                 | PA 6 C              | PA 6 C               | PA 6 C              | PA 6 C            | PA 6 C             |
| Fillers                                                         |                                     | carbon<br>fibres            | heat<br>stabilized        | lubricant                   |                            |                       |                     | MoS <sub>2</sub>     | oil                 | oil               | oil                |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.23                        | 1.15                      | 1.11                        | 1.19                       | 1.02                  | 1.15                | 1.15                 | 1.13                | 1.14              | 1.14               |
| Mechanical properties                                           |                                     |                             |                           |                             |                            |                       |                     |                      |                     |                   |                    |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 5,100                       | 3,400                     | 3,100                       | 3,300                      | 1,800                 | 3,500               | 3,200                | 2,900               | 3,100             | 3,100              |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 104                         | 89                        | 76                          | 106                        | 53                    | 83                  | 82                   | 69                  | 70                | 70                 |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               | 104                         | 72                        | 76                          | 106                        | 53                    | 80                  | 80                   | 66                  | 68                | 68                 |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 | 12                          | 7                         | 11                          | 21                         | 9                     | 4                   | 4                    | 8                   | 4                 | 4                  |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 13                          | 25                        | 14                          | 32                         | 200                   | 55                  | 55                   | 50                  | 50                | 50                 |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 4,300                       | 3,300                     | 2,800                       | 3,300                      | 1,700                 | 3,200               | 3,000                | 2,900               | 2,900             | 2,900              |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 135                         | 112                       | 102                         | 132                        | 68                    | 109                 | 102                  | 95                  | 95                | 95                 |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 3,800                       | 2,900                     | 2,400                       | 2,800                      | 1,600                 | 2,900               | 2,800                | 2,700               | 2,700             | 2,700              |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               | 16/33                       | 14 / 29                   | 20 / 35                     | 20 / 35                    | 13 / 24               | 19 / 36             | 22 / 38              | 19/35               | 21/37             | 21 / 37            |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             | 116                         | n.b.                      | 37                          | n.b.                       | n.b.                  | n.b.                | n.b.                 | n.b.                | n.b.              | n.b.               |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             |                             | 5                         |                             | 9                          | 7                     | 4                   | 4                    | 5                   | 5                 | 6                  |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 200                         | 191                       | 145                         | 187                        | 105                   | 170                 | 170                  | 150                 | 150               | 150                |
| Thermal properties                                              |                                     |                             |                           |                             |                            |                       |                     |                      |                     |                   |                    |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | 48                          | 57                        | 54                          | 72                         | 37                    | 40                  | 43                   | 48                  | 42                | 42                 |
| Melting temperature<br>(DIN 53765)                              | [°C]                                | 251                         | 263                       | 261                         | 299                        | 180                   | 215                 | 217                  | 218                 | 216               | 216                |
| Service temperature,<br>short term                              | [°C]                                | 170                         | 180                       | 120                         | 220                        | 150                   | 170                 | 170                  | 170                 | 170               | 170                |
| Service temperature,<br>long term                               | [°C]                                | 100                         | 115                       | 90                          | 130                        | 110                   | 100                 | 100                  | 100                 | 100               | 100                |
| Thermal expansion (CLTE),<br>23 – 60 °C (DIN EN ISO 11359-1;2)  | [10 <sup>-5</sup> K <sup>-1</sup> ] | 9                           | 12                        | 11                          | 13                         | 15                    | 12                  | 11                   | 13                  | 13                | 13                 |
| Thermal expansion (CLTE),<br>23 – 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 10                          | 12                        | 12                          | 13                         | 16                    | 12                  | 11                   | 13                  | 13                | 13                 |
| Specific heat<br>(ISO 22007-4:2008)                             | [J/(g×K)]                           | 1.4                         | 1.5                       | 1.6                         | 1.7                        | 1.8                   | 1.7                 | 1.6                  | 1.7                 | 1.7               | 1.7                |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           | 0.72                        | 0.36                      | 0.36                        | 0.37                       | 0.30                  | 0.38                | 0.33                 | 0.37                | 0.37              | 0.37               |
| Electrical properties                                           |                                     |                             |                           |                             |                            |                       |                     |                      |                     |                   |                    |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ω]                                 | 1010                        | 1014                      | 1014                        | 1014                       | 1014                  | 1014                | 1014                 | 1014                | 1014              | 1014               |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              | 10º                         | 1014                      | 1014                        | 1014                       | 1014                  | 1014                | 1014                 | 1014                | 1014              | 1014               |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                             |                           |                             |                            |                       |                     |                      |                     | 21                |                    |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                             |                           |                             |                            |                       |                     |                      |                     | 600               |                    |
| Miscellaneous data                                              |                                     |                             |                           |                             |                            |                       |                     |                      |                     |                   |                    |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.1 / 0.3                   | 0.2 / 0.3                 | 0.2 / 0.4                   | 0.4 / 0.7                  | 0.04 / 0.07           | 0.2 / 0.4           | 0.2 / 0.5            | 0.2 / 0.4           | 0.2 / 0.4         | 0.2 / 0.4          |
| Resistance<br>to hot water / bases                              |                                     | (+)                         | (+)                       | (+)                         | (+)                        | +                     | (+)                 | (+)                  | (+)                 | (+)               | (+)                |
| Resistance to weathering                                        |                                     | (+)                         | -                         | -                           | -                          | -                     | -                   | (+)                  | -                   | (+)               | -                  |
| Flammability (UL94)<br>(DIN IEC 60695-11-10)                    |                                     | НВ                          | НВ                        | НВ                          | V2                         | НВ                    | НВ                  | НВ                   | НВ                  | НВ                | НВ                 |

The corresponding values and information are no minimum or maximum values, but guideline values that can be used primarily for comparison purposes for material selection. These values are within the normal tolerance range of product properties and do not represent guaranteed property values. Therefore they shall not be used for specification purposes. Unless otherwise noted, these values were determined by tests at reference dimensions (typically rods with diameter 40-60 mm according to DIN EN 15860) on extruded, cast, compression moulded and machined specimens. As the properties depend on the dimensions of the semi-finished products and the orientation in the component (esp. in reinforced grades), the material may not be used without separate testing under individual circumstances. Data sheet values are subject to periodic review, the most recent update can be found at www.ensinger-online.com

Technical changes reserved.

#### Material standard values

| Material                                                        |                                     | TECAGLIDE<br>green | TECARIM<br>1500<br>yellow | TECAFORM<br>AH<br>natural | TECAFORM<br>AH<br>black | TECAFORM<br>AH GF25<br>natural | TECAFORM<br>AH ELS<br>black   | TECAFORM<br>AH SD<br>natural | TECAFORM<br>AH ID<br>grey | TECAFORM<br>AH LA<br>blue | TECAFORM<br>AH AM<br>natural |
|-----------------------------------------------------------------|-------------------------------------|--------------------|---------------------------|---------------------------|-------------------------|--------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------|------------------------------|
| Polymer                                                         |                                     | PA 6 C             | PA 6 C                    | POM-C                     | POM-C                   | POM-C                          | POM-C                         | POM-C                        | POM-C                     | POM-C                     | РОМ-С                        |
| Fillers                                                         |                                     | solid<br>lubricant | elastomer                 |                           |                         | glass fibres                   | conductive<br>carbon<br>black | antistatic<br>agent          | detectable<br>filler      | solid<br>lubricant        | antimicrobic                 |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.13               | 1.11                      | 1.41                      | 1.41                    | 1.59                           | 1.41                          | 1.35                         | 1.49                      | 1.36                      | 1.41                         |
| Mechanical properties                                           |                                     |                    |                           |                           |                         |                                |                               |                              |                           |                           |                              |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 3,200              | 2,200                     | 2,800                     | 2,800                   | 4,200                          | 1,800                         | 1,300                        | 3,200                     | 2,100                     | 2,900                        |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 76                 | 53                        | 67                        | 67                      | 51                             | 42                            | 39                           | 68                        | 48                        | 67                           |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               | 76                 | 53                        | 67                        | 67                      | 51                             | 42                            | 39                           | 68                        | 48                        | 69                           |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 | 14                 | 13                        | 9                         | 9                       | 9                              | 11                            | 23                           | 8                         | 9                         | 7                            |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 18                 | 58                        | 32                        | 32                      | 12                             | 11                            | 23                           | 10                        | 9                         | 18                           |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 3,100              | 2,200                     | 2,600                     | 2,600                   | 4,100                          | 1,500                         | 1,200                        | 3,100                     | 2,000                     | 2,800                        |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 103                | 73                        | 91                        | 91                      | 88                             | 56                            | 46                           | 100                       | 70                        | 93                           |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 2,500              | 2,100                     | 2,300                     | 2,300                   | 3,600                          | 1,500                         | 1,100                        | 2,400                     | 1,800                     | 2,200                        |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               | 18/34              | 14 / 26                   | 20 / 35                   | 20 / 35                 | 23 / 39                        | 16 / 25                       | 12/19                        | 17 / 31                   | 16 / 27                   | 18 / 31                      |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             | n.b.               | n.b.                      | n.b.                      | 150                     | 36                             | 74                            | n.b.                         | 59                        | 27                        | 102                          |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             | 4                  | 16                        | 8                         | 6                       |                                |                               | 9                            | 11                        |                           |                              |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 159                | 95                        | 165                       | 165                     | 180                            | 96                            | 74                           | 174                       | 120                       | 163                          |
| Thermal properties                                              |                                     |                    |                           |                           |                         |                                |                               |                              |                           |                           |                              |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | 45                 | 53                        | -60                       | -60                     | -60                            | -60                           | -60                          | -60                       | -60                       | -60                          |
| Melting temperature<br>(DIN 53765)                              | [°C]                                | 218                | 216                       | 166                       | 166                     | 170                            | 169                           | 165                          | 169                       | 166                       | 166                          |
| Service temperature,<br>short term                              | [°C]                                | 130                | 160                       | 140                       | 140                     | 140                            | 140                           | 140                          | 140                       | 140                       | 140                          |
| Service temperature,<br>long term                               | [°C]                                | 100                | 95                        | 100                       | 100                     | 100                            | 100                           | 100                          | 100                       | 100                       | 100                          |
| Thermal expansion (CLTE),<br>23 – 60 °C (DIN EN ISO 11359-1;2)  | [10 <sup>-5</sup> K <sup>-1</sup> ] | 11                 | 13                        | 13                        | 13                      | 8                              | 13                            | 16                           | 13                        | 13                        | 13                           |
| Thermal expansion (CLTE),<br>23 – 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 12                 | 13                        | 14                        | 14                      | 8                              | 14                            | 17                           | 14                        | 14                        | 14                           |
| Specific heat<br>(ISO 22007-4:2008)                             | []/(g×K)]                           | 1.7                | 1.7                       | 1.4                       | 1.4                     | 1.2                            | 1.3                           | 1.6                          | 1.3                       | 1.4                       | 1.4                          |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           | 0.38               | 0.32                      | 0.39                      | 0.39                    | 0.47                           | 0.46                          | 0.30                         | 0.39                      | 0.39                      | 0.39                         |
| Electrical properties                                           |                                     |                    |                           |                           |                         |                                |                               |                              |                           |                           |                              |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ω]                                 | 1014               | 1014                      | 1014                      | 1014                    | 1014                           | 104                           | 1011                         | 1013                      | 1014                      |                              |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              | 1014               | 1014                      | 1013                      | 1014                    | 1014                           | 10 <sup>5</sup>               | 10º                          |                           | 1014                      |                              |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                    |                           | 49                        | 38                      | •                              |                               | 5                            |                           |                           |                              |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                    |                           | 600                       | 600                     |                                |                               | 600                          |                           |                           |                              |
| Miscellaneous data                                              |                                     |                    |                           |                           |                         |                                |                               |                              |                           |                           |                              |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.2 / 0.3          | 0.6 / 1.2                 | 0.05 / 0.1                | 0.05 / 0.1              | 0.07 / 0.2                     | 0.05 / 0.2                    | 0.9 / 1.8                    | 0.05 / 0.1                | 0.05 / 0.1                | 0.05 / 0.1                   |
| Resistance<br>to hot water / bases                              |                                     | (+)                | (+)                       | (+)                       | (+)                     | (+)                            | (+)                           | (+)                          | (+)                       | (+)                       | (+)                          |
| Resistance to weathering                                        |                                     | -                  | -                         | -                         | (+)                     | -                              | (+)                           | -                            | -                         | -                         | -                            |
| Flammability (UL94)<br>(DIN JEC 60695-11-10)                    |                                     | НВ                 | НВ                        | НВ                        | НВ                      | НВ                             | НВ                            | HB                           | НВ                        | HB                        | НВ                           |

Data generated directly after machining (standard climate Germany). For polyamides the values strongly depend on the humidity content.

good resistance (+) limited resistance

poor resistance (depending on concen--

tration, time and temperature)

**n.b.** not broken

n.a. not applicable

(a) Glass transition temperature testing according to DIN EN ISO 11357

- (b) Thermal conductivity testing according to ISO 8302
  - Thermal conductivity testing according to ASTM E 1530 (c)
  - (d) Surface resistance testing according to ASTM D 257

(e)

(f)

No listing at UL (yellow card). Thermal expansion (CLTE), 50 – 200 °C Specific surface resistance and volume resistance (g) testing according to DIN EN 61340-2-3

(h) Dielectric strength testing according to ASTM D 149

(i) Thermal expansion testing according to ASTM D 695

Test specimen to DIN EN ISO 527-2

| Material                                                        |                                     | TECAFORM<br>AH MT | TECAFORM<br>AD<br>natural | TECAFORM<br>AD<br>black | TECAFORM<br>AD AF<br>natural | TECAPRO<br>MT<br>white | TECAFINE<br>PMP<br>natural | TECANYL<br>731<br>grey | TECANYL<br>GF30<br>natural | TECANYL<br>MT | TECARAN<br>ABS<br>grey |
|-----------------------------------------------------------------|-------------------------------------|-------------------|---------------------------|-------------------------|------------------------------|------------------------|----------------------------|------------------------|----------------------------|---------------|------------------------|
| Polymer                                                         |                                     | POM-C             | POM-H                     | РОМ-Н                   | РОМ-Н                        | PP                     | PMP                        | PPE                    | PPE                        | PPE           | ABS                    |
| Fillers                                                         |                                     |                   |                           |                         | PTFE                         | heat<br>stabilized     |                            |                        | glass fibres               |               |                        |
| Density<br>(DIN EN ISO 1183)                                    | [g/cm³]                             | 1.41              | 1.43                      | 1.43                    | 1.49                         | 0.93                   | 0.83                       | 1.1                    | 1.3                        | 1.04 - 1.10   | 1.04                   |
| Mechanical properties                                           |                                     |                   |                           |                         |                              |                        |                            |                        |                            |               |                        |
| Modulus of elasticity (tensile test)<br>(DIN EN ISO 527-2)      | [MPa]                               | 2,800             | 3,400                     | 3,600                   | 3,000                        | 2,000                  | 1,000                      | 2,400                  | 4,100                      | 2,400         | 1,700                  |
| Tensile strength<br>(DIN EN ISO 527-2)                          | [MPa]                               | 69                | 79                        | 80                      | 53                           | 34                     | 26                         | 57                     | 73                         | 65            | 32                     |
| Tensile strength at yield<br>(DIN EN ISO 527-2)                 | [MPa]                               | 70                | 79                        | 80                      | 53                           | 34                     | 26                         | 57                     | 73                         | 67            | 32                     |
| Elongation at yield<br>(DIN EN ISO 527-2)                       | [%]                                 | 15                | 37                        | 32                      | 8                            | 5                      | 6                          | 15                     | 5                          | 4             | 3                      |
| Elongation at break<br>(DIN EN ISO 527-2)                       | [%]                                 | 30                | 45                        | 43                      | 8                            | 67                     | 67                         | 22                     | 5                          | 8             | 49                     |
| Modulus of elasticity (flexural test)<br>(DIN EN ISO 178)       | [MPa]                               | 2,800             | 3,600                     | 3,600                   | 3,000                        | 1,800                  | 800                        | 2,500                  | 3,900                      | 2,400         | 1,600                  |
| Flexural strength<br>(DIN EN ISO 178)                           | [MPa]                               | 94                | 106                       | 106                     | 85                           | 54                     | 31                         | 85                     | 116                        | 95            | 49                     |
| Compression modulus<br>(EN ISO 604)                             | [MPa]                               | 2,200             | 2,700                     | 2,800                   | 2,400                        | 1,600                  | 1,000                      | 2,100                  | 3,300                      | 2,100         | 1,400                  |
| Compressive strength (1% / 2%)<br>(EN ISO 604)                  | [MPa]                               | 18 / 32           | 19/33                     | 22 / 38                 | 19/33                        | 16/26                  | 11 / 19                    | 18 / 33                | 23 / 41                    | 17 / 30       | 15 / 26                |
| Impact strength (Charpy)<br>(DIN EN ISO 179-1eU)                | [kJ/m²]                             | n.b.              | n.b.                      | n.b.                    | n.b.                         | 140                    | 17                         | 69                     | 37                         | 70            | n.b.                   |
| Notched impact strength (Charpy)<br>(DIN EN ISO 179-1eA)        | [kJ/m²]                             | 9                 | 15                        | 14                      | 25                           |                        |                            |                        |                            |               | 34                     |
| Ball intendation hardness<br>(ISO 2039-1)                       | [MPa]                               | 158               | 185                       | 185                     | 166                          | 100                    | 58                         | 146                    | 205                        | 140           | 74                     |
| Thermal properties                                              |                                     |                   |                           |                         |                              |                        |                            |                        |                            |               |                        |
| Glass transition temperature<br>(DIN 53765)                     | [°C]                                | -60               | -60                       | -60                     | -60                          | -10                    |                            | 145                    | 150                        | 174           | 104                    |
| Melting temperature<br>(DIN 53765)                              | [°C]                                | 169               | 182                       | 182                     | 179                          | 165                    |                            | n.a.                   | n.a.                       | n.a.          |                        |
| Service temperature,<br>short term                              | [°C]                                | 140               | 150                       | 150                     | 150                          | 140                    | 170                        | 110                    | 110                        | 110           | 100                    |
| Service temperature,<br>long term                               | [°C]                                | 100               | 110                       | 110                     | 110                          | 100                    | 120                        | 85                     | 85                         | 95            | 75                     |
| Thermal expansion (CLTE),<br>23 – 60 °C (DIN EN ISO 11359-1;2)  | [10 <sup>-5</sup> K <sup>-1</sup> ] | 13                | 12                        | 11                      | 12                           | 13                     |                            | 8                      | 4                          | 8             |                        |
| Thermal expansion (CLTE),<br>23 - 100 °C (DIN EN ISO 11359-1;2) | [10 <sup>-5</sup> K <sup>-1</sup> ] | 14                | 13                        | 11                      | 13                           | 14                     |                            | 8                      | 4                          | 8             |                        |
| Specific heat<br>(ISO 22007-4:2008)                             | [J/(g×K)]                           | 1.4               | 1.3                       | 1.3                     | 1.3                          |                        |                            | 1.3                    | 1.2                        | 1.3           |                        |
| Thermal conductivity<br>(ISO 22007-4:2008)                      | [W/(m×K)]                           | 0.39              | 0.43                      | 0.43                    | 0.46                         |                        |                            | 0.21                   | 0.28                       | 0.21          |                        |
| Electrical properties                                           |                                     |                   |                           |                         |                              |                        |                            |                        |                            |               |                        |
| Specific surface resistance<br>(DIN IEC 60093)                  | [Ω]                                 | 10 <sup>12</sup>  | 1014                      | 1014                    | 1014                         | 1014                   |                            | 1014                   | 1014                       | 1014          | 1014                   |
| Specific volume resistance<br>(DIN IEC 60093)                   | [Ω×cm]                              |                   |                           | 1014                    |                              | 1014                   |                            | 1014                   | 1014                       | 1014          | 1014                   |
| Dielectric strength<br>(DIN EN 60243-1)                         | [kV/mm]                             |                   |                           | 38                      |                              |                        |                            |                        |                            |               |                        |
| Resistance to tracking (CTI)<br>(DIN EN 60112)                  | [V]                                 |                   |                           | 600                     |                              |                        |                            |                        |                            |               |                        |
| Miscellaneous data                                              |                                     |                   |                           |                         |                              |                        |                            |                        |                            |               |                        |
| Water absorption 24 h / 96 h (23 °C)<br>(DIN EN ISO 62)         | [%]                                 | 0.05 / 0.1        | 0.05 / 0.1                | 0.05 / 0.1              | 0.05 / 0.1                   | 0.01 / 0.02            | <0.01/<0.01                | 0.02 / 0.04            | 0.01 / 0.02                | 0.02 / 0.04   | 0.07 / 0.2             |
| Resistance<br>to hot water / bases                              |                                     | (+)               | -                         | -                       | -                            | (+)                    | (+)                        | (+)                    | (+)                        | (+)           | -                      |
| Resistance to weathering                                        |                                     | -                 | -                         | -                       | -                            | -                      | -                          | -                      | -                          | -             | -                      |
| Flammability (UL94)<br>(DIN IEC 60695-11-10)                    |                                     | НВ                | НВ                        | НВ                      | НВ                           | НВ                     | НВ                         | НВ                     | НВ                         | НВ            | НВ                     |

The corresponding values and information are no minimum or maximum values, but guideline values that can be used primarily for comparison purposes for material selection. These values are within the normal tolerance range of product properties and do not represent guaranteed property values. Therefore they shall not be used for specification purposes. Unless otherwise noted, these values were determined by tests at reference dimensions (typically rods with diameter 40-60 mm according to DIN EN 15860) on extruded, cast, compression moulded and machined specimens. As the properties depend on the dimensions of the semi-finished products and the orientation in the component (esp. in reinforced grades), the material may not be used without separate testing under individual circumstances. Data sheet values are subject to periodic review, the most recent update can be found at www.ensinger-online.com

Technical changes reserved.

### Chemical resistance

Important criteria for testing chemical resistance are temperature, the concentration of the agents, the residence time and the mechanical load. The resistance against various chemicals is listed in the following table. These details correspond to the present state of our knowledge and are meant to provide information about our products and their applications. They do not mean that the chemical resistance of products or their suitability for a particular purpose is guaranteed in a legally binding way. Any existing commercial proprietary rights are to be taken into account. For specific applications it is recommended that suitability is first established. Standard testing is performed in normal climatic conditions 23/50 according to DIN EN ISO 291.

|                                           | TECASINT (PI) | ТЕСАРЕЕК НТ, ST (РЕК, РЕКЕКК) | TECAPEEK (PEEK) | TECATRON (PPS) | TECAPEI (PEI) | TECASON E (PES) | TECASON P (PPSU) | TECASON S (PSU) | TECAFLON PTFE (TF) | TECAFLON PVDF (PVDF) | TECAMID 6 (PA6) | TECAMID 46, 66 (PA46, 66) | TECAMID 11, 12 (PA11, 12) | TECARIM (PA6 C + elastomer) | TECANAT (PC) | ТЕСАРЕТ (РЕТ), ТЕСАDUR РВТ (РВТ) | ТЕСАҒОRМ АН (РОМ-С) | ТЕСАҒОRМ AD (РОМ-H) | TECAFINE PP (PP) | TECAFINE PE (PE) | TECARAN ABS (ABS) | TECANYL (PPE) |
|-------------------------------------------|---------------|-------------------------------|-----------------|----------------|---------------|-----------------|------------------|-----------------|--------------------|----------------------|-----------------|---------------------------|---------------------------|-----------------------------|--------------|----------------------------------|---------------------|---------------------|------------------|------------------|-------------------|---------------|
| Acetamide 50%                             |               |                               | +               |                |               |                 |                  |                 | +                  | +                    | +               | +                         | +                         | +                           |              |                                  | +                   | +                   |                  | +                | +                 |               |
| Acetone                                   | +             | +                             | +               | +              | -             | -               | -                | -               | +                  | 0                    | +               | +                         | 0                         | +                           | -            | 0                                | +                   | +                   | +                | +                | -                 | -             |
| Formic acid, aqueous solution 10%         | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | -               | -                         | -                         | -                           | -            | 0                                | -                   | -                   | +                | +                | +                 | +             |
| Ammonia solution 10%                      | -             | +                             | +               | +              | -             | 0               | ••••••           | 0               | +                  | +                    | 0               | 0                         | 0                         | 0                           | -            | -                                | +                   | 0                   | +                | +                | +                 | +             |
| Anone                                     |               |                               | ••••••          | ••••••         | ••••••        | -               | ••••••           |                 | +                  | 0                    | +               | +                         | +                         | +                           | -            |                                  |                     | +                   | +                | 0                |                   |               |
| Benzine                                   | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | -            | +                                | +                   | +                   | 0                | 0                | 0                 | -             |
| Benzene                                   | +             |                               | +               | 0              | -             | +               | -                | -               | +                  | 0                    | +               | +                         | +                         | +                           | -            | 0                                | +                   | +                   | -                | -                | -                 | -             |
| Bitumen                                   | +             |                               | +               |                |               |                 |                  |                 | +                  |                      | +               | +                         | 0                         |                             | -            |                                  | +                   | +                   | 0                | +                |                   |               |
| Boric acid, aqueous solution 10%          |               | +                             | 0               |                |               | +               |                  | 0               | +                  | +                    | -               | -                         | -                         | -                           | +            | -                                | -                   | -                   | +                | +                | +                 |               |
| Butyl acetate                             | +             |                               | +               | +              | -             | -               | -                | -               | +                  | -                    | +               | +                         | +                         | +                           | -            | -                                | +                   | +                   | 0                | 0                | -                 |               |
| Calcium chloride, solution 10%            | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | 0                   | +                | +                | +                 |               |
| Chlorbenzene                              | +             |                               | +               | 0              | 0             | -               | -                | -               | +                  | 0                    | +               | +                         | +                         | +                           | -            | -                                | +                   | +                   | 0                | -                | -                 |               |
| Chloroform                                | +             |                               | +               | +              | -             | -               | -                | -               | +                  | +                    | -               | -                         | -                         | -                           | -            | -                                | -                   | -                   | 0                | -                | -                 | -             |
| Cyclohexane                               | +             |                               | +               | +              | +             | +               | +                | 0               | +                  | +                    | +               | +                         | +                         | +                           | -            | +                                | +                   | +                   | +                | +                | +                 | +             |
| Cyclohexanone                             | +             |                               | +               | +              |               | -               | -                | -               | +                  | 0                    | +               | +                         | +                         | +                           | -            | -                                | +                   | +                   | +                | +                | -                 | +             |
| Diesel oil                                | +             |                               | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | 0            | +                                | +                   | +                   | 0                | +                | +                 | +             |
| Dimethyl formamide                        | 0             |                               | +               | +              |               | -               | -                | -               | +                  | -                    | +               | +                         | 0                         | +                           | -            | +                                | +                   | 0                   | +                | +                | -                 |               |
| Diocthyl phthalate                        |               |                               | +               | +              | 0             | +               | +                | 0               | +                  | 0                    | +               | +                         | +                         | +                           | 0            | +                                | +                   | +                   | +                | +                |                   | +             |
| Dioxane                                   | +             |                               | +               | +              | +             | 0               | -                | -               | +                  | +                    | +               | +                         | +                         | +                           | -            | 0                                | 0                   | 0                   | +                | +                |                   | 0             |
| Acetic acid, concentrated                 | 0             |                               | 0               | +              | -             | +               | +                | -               | +                  | 0                    | -               | -                         | -                         | -                           | -            | -                                | -                   | -                   | 0                | 0                | -                 | +             |
| Acetic acid, aqueous solution 10%         | +             |                               | +               | +              | +             | +               | +                | +               | +                  | +                    | -               | -                         | 0                         | -                           | +            | 0                                | +                   | 0                   | +                | +                | +                 | +             |
| Acetic acid, aqueous solution 5%          | +             |                               | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | 0                         | +                           | +            | +                                | +                   | 0                   | +                | +                | +                 | +             |
| Ethanol 96%                               | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | 0               | 0                         | 0                         | 0                           | 0            | +                                | +                   | +                   | +                | +                | +                 | +             |
| Ethyl acetate                             | +             |                               | +               | +              | 0             | -               | 0                | -               | +                  | 0                    | +               | +                         | +                         | +                           | -            | 0                                | +                   | +                   | +                | +                |                   | +             |
| Ethyl ether                               | +             |                               | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | -            | +                                | +                   | +                   | +                | +                |                   |               |
| Ethylene chloride                         | +             |                               |                 |                | +             |                 |                  |                 | +                  |                      | +               | +                         | 0                         | +                           | -            | -                                | -                   | -                   | +                | 0                | -                 |               |
| Hydrofluoric acid, 40%                    |               |                               | -               | 0              | -             | -               | _                | -               | 0                  | +                    | -               | -                         | -                         |                             | -            | -                                | -                   | -                   | +                | +                | 0                 | +             |
| Formaldehyde, aqueous solution 30%        |               | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | 0               | 0                         | 0                         | 0                           | +            |                                  | +                   | +                   | +                | +                | +                 | +             |
| Formamide                                 |               |                               | +               |                |               |                 | ••••••           | •••••••         | +                  |                      | +               | +                         | 0                         | +                           |              | +                                | +                   | 0                   |                  | 0                |                   |               |
| Freon, Frigen, liquid                     | +             | -                             | _               | +              |               | +               |                  | +               | +                  |                      | +               | +                         | +                         | +                           | -            | +                                |                     | +                   | -                | 0                | 0                 | +             |
| Fruit juices                              | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | 0            | +                                | +                   | 0                   | +                | +                | +                 | +             |
| Glykol                                    | +             | +                             | +               | +              | 0             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | 0                                | 0                   | 0                   | +                | +                | +                 | +             |
| Glysantine, aqueous solution 40%          | +             | +                             | +               | +              |               | +               |                  | +               | +                  | +                    | +               | +                         | +                         |                             | +            | +                                | +                   | +                   | +                | +                |                   | +             |
| Giycerine                                 | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | -            | +                                | +                   | +                   | +                | +                | +                 | +             |
| Urea, aqueous solution                    | +             | +                             | +               | +              |               | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                | +                 | +             |
|                                           | +             | +                             | +               | +              |               | +               | +                | U               | +                  | +                    | +               | +                         | +                         | +                           | 0            | +                                | +                   | +                   | U                | +                | +                 | +             |
|                                           | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | Ŧ            | Ŧ                                | Ŧ                   | +                   | +                |                  | +                 | Ť             |
| Isonronanol                               | +             |                               | +               |                | +             | +               | +                | U               | +                  |                      | +               | +                         | +                         |                             |              | 0                                |                     |                     | +                | +                | ÷                 | +             |
| Indine solution alrohol solution          | +             |                               | +               | +              | +             | +               | +                | 0               | +                  | +                    | T               | -<br>-                    | -                         | +<br>-                      | _            | U                                | Ŧ                   | T                   | +                | τ<br>+           | 0                 | +<br>         |
|                                           | -<br>-        |                               | 1               |                |               |                 | +                | 0               | -<br>-             | 0                    | 0               | 0                         | 0                         | 0                           | _            | _                                | +                   | _                   | +                | -7<br>-          | ۲<br>۲            | -7<br>-       |
| Potassium lye, aqueous 50 %               | 0             | -                             | +               | -T<br>-L       | 0             | -T<br>-L        | +                | -<br>-          | -<br>-             | 0                    | +               | +                         | +                         | 1                           | _            | _                                | +                   | _                   | +                | -7<br>-          | +                 | -7<br>-       |
| Potassium dichromate aqueous solution 10% | -             |                               | -               | -              | 0             | -               |                  | -               |                    | ں<br>ب               |                 | -7<br>                    | -                         | -                           |              | -                                |                     | 0                   | -                | -7<br>-          |                   | -7<br>-       |
| · • • • • • • • • • • • • • • • • • • •   |               |                               |                 |                |               |                 |                  |                 | г                  | ſ                    | r               | r                         | 0                         |                             | r            | - C                              |                     | 5                   | r .              | r.               | с.<br>С           |               |

+ resistant o limited resistance - not resistant (also dependent on concentration, time and temperature)

|                                            | TECASINT (PI) | ТЕСАРЕЕК НТ, ST (РЕК, РЕКЕКК) | TECAPEEK (PEEK) | TECATRON (PPS) | TECAPEI (PEI) | TECASON E (PES) | TECASON P (PPSU) | TECASON S (PSU) | TECAFLON PTFE (TF) | TECAFLON PVDF (PVDF) | TECAMID 6 (PA6) | TECAMID 46, 66 (PA46, 66) | TECAMID 11, 12 (PA11, 12) | TECARIM (PA6 C + elastomer) | TECANAT (PC) | ТЕСАРЕТ (РЕТ), ТЕСАDUR РВТ (РВТ) | ТЕСАҒОRМ АН (РОМ-С) | ТЕСАҒОRМ АD (РОМ-Н) | TECAFINE PP (PP) | TECAFINE PE (PE) | TECARAN ABS (ABS) | TECANYL (PPE) |
|--------------------------------------------|---------------|-------------------------------|-----------------|----------------|---------------|-----------------|------------------|-----------------|--------------------|----------------------|-----------------|---------------------------|---------------------------|-----------------------------|--------------|----------------------------------|---------------------|---------------------|------------------|------------------|-------------------|---------------|
| Potassium permaganate, aqueous solution 1% | +             | +                             | +               | +              | +             |                 | +                | +               | +                  | +                    | -               | -                         | -                         | -                           | +            | +                                | +                   | +                   | +                | +                | 0                 | +             |
| Cupric sulphate, 10%                       | +             | +                             | +               | +              |               | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            |                                  | +                   | -                   | +                | +                | +                 | +             |
| Linseed oil                                | +             |                               | +               | +              |               | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                | +                 | +             |
| Methanol                                   | +             |                               | +               | +              | 0             | +               | 0                | 0               | +                  | 0                    | +               | +                         | 0                         | +                           | -            | +                                | +                   | +                   | +                | +                | 0                 | +             |
| Methyl ethyl ketone                        | +             | +                             | +               | +              | -             | -               | 0                | -               | +                  | 0                    | +               | +                         | +                         | +                           | -            | 0                                | 0                   | 0                   | 0                | 0                | -                 | -             |
| Methylene chloride                         | +             |                               | +               | 0              |               | -               | -                | -               | +                  | +                    | 0               | 0                         | -                         | 0                           | -            | -                                | 0                   | 0                   | -                | 0                | -                 |               |
| Milk                                       | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                | +                 | +             |
| Lactic acia, aqueous solution 90%          | +             |                               | +               | +              | +             | 0               |                  |                 | +                  | +                    | -               | -                         | 0                         | -                           | +            |                                  | +                   | -                   | +                | +                | -                 | -             |
| Sodium bisulphite, aqueous solution 10%    | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | 0                   | +                | +                | +                 | +             |
| Sodium carbonate, aqueous solution 10%     | U<br>-        | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | U<br>-              | +                | +                | +                 | +             |
| Sodium chloride, aqueous solution 10%      | +<br>+        | +<br>+                        | +<br>+          | +<br>+         | т<br>+        | т               | +<br>+           | +<br>+          | +<br>+             | +<br>+               | +<br>+          | +<br>+                    | +<br>+                    | +<br>+                      | +<br>+       | т<br>+                           | -<br>-              | -<br>-              | +<br>+           | +<br>+           | +<br>+            | Ŧ             |
| Sodium nitrate, aqueous solution 10%       | +             |                               | +               | +              |               |                 |                  |                 | +                  | +                    | +               | +                         | +                         | +                           | 0            | +                                | +                   | +                   | +                | +                | +                 |               |
| Sodium thiosulnhate 10%                    | +             | •••••                         | +               | +              | ••••••        | •••••           | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                | +                 |               |
| Soda Ive, aaueous 5%                       | 0             |                               | •<br>+          | +              | 0             | +               | •<br>+           | +               | +                  | 0                    | +               | +                         | +                         | +                           | -            | 0                                | +                   | -                   | +                | +                |                   | +             |
| Soda Iye, aqueous 50%                      | -             | +                             | +               | +              | -             | +               | +                | +               | 0                  | 0                    | 0               | 0                         | 0                         | 0                           | -            | -                                | +                   | -                   | +                | +                | +                 | +             |
| Nitrobenzene                               | +             |                               | 0               | 0              | ••••••        | -               | ••••••           |                 | +                  | 0                    | -               | -                         | -                         | -                           | -            | 0                                | 0                   | 0                   | +                | +                | -                 |               |
| Oxalic acid, aqueous solution 10%          | +             | +                             | +               | +              |               | +               | +                | +               | +                  | +                    | 0               | 0                         | 0                         | 0                           | +            | +                                | -                   |                     | +                | +                | +                 | +             |
| Ozone                                      | 0             |                               | +               |                |               |                 | +                | +               | +                  | +                    | -               | -                         | -                         | -                           | +            | 0                                | -                   | -                   |                  | 0                |                   |               |
| Paraffin oil                               | +             |                               | +               | +              | +             | +               | +                |                 | +                  | +                    | +               | +                         | +                         | +                           | -            | +                                | +                   | +                   | +                | +                | +                 | +             |
| Perchlorethylene                           | +             |                               | +               | +              | +             | -               | 0                | -               | +                  | +                    | 0               | 0                         | -                         | 0                           | -            | 0                                | 0                   | 0                   | -                | -                | 0                 |               |
| Petroleum                                  | +             | +                             | +               | +              |               |                 | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                | 0                 | +             |
| Phenol, aqueous solution                   | +             |                               | 0               | +              |               | -               | -                | -               | +                  | +                    | -               | -                         | -                         | -                           | -            | -                                | -                   | -                   | +                | +                | 0                 |               |
| Phosphoric acid, concentrated              | 0             | +                             | +               | +              |               |                 | ••••••           | +               | +                  | +                    | -               | -                         | -                         | -                           |              | +                                |                     |                     | +                | +                | +                 |               |
| Phosphoric acid, aqueous solution 10%      | 0             | +                             | +               | +              | +             |                 | +                | +               | +                  | +                    | -               | -                         | -                         | -                           | +            | +                                | 0                   | -                   | +                | +                | +                 | +             |
| Propanoi                                   | +             | ••••••                        | +               | _              | +             |                 | +                | +               | +                  | +                    | +               | +                         | -                         | +                           | +            | +                                | +                   | +                   | +                | +                | +                 | +             |
| rynume<br>Salicyla acid                    |               |                               | +               | U              |               | _               | ••••••           |                 | +                  | U<br>-               | +               | +                         | U<br>-                    | +                           |              | 0                                | U                   | -                   | U                | U<br>-           | _<br>_            |               |
| Nitric acid, aqueous solution 2%           | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | -               | -                         | -                         | -                           | 0            | +                                | _                   | -                   | +                | +                | +                 | -             |
| Hvdrochloric acid, aqueous solution 2%     | +             | +                             | +               | +              | +             | +               | •<br>+           | +               | +                  | +                    | -               | -                         | 0                         | -                           | +            | +                                | -                   | -                   | +                | +                | +                 | +             |
| Hydrochloric acid, aqueous solution 36%    | -             | +                             | +               | 0              | +             | +               | +                | 0               |                    | +                    | -               | -                         | -                         | -                           | 0            | -                                | -                   | -                   | +                | +                | +                 | +             |
| Sulphur dioxide                            | +             |                               | +               | +              | •••••         | 0               | ••••••           |                 | +                  | +                    | +               | +                         | +                         | +                           | -            | +                                | +                   | +                   | 0                | 0                | -                 |               |
| Sulphuric acid, concentrated 98%           | -             | -                             | -               | +              | -             | -               | -                | -               | +                  | 0                    | -               | -                         | -                         | -                           | -            | -                                | -                   | -                   | +                | 0                | -                 | -             |
| Sulphuric acid, aqueous solution 2%        | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | -               | -                         | -                         | -                           | +            | +                                | +                   | -                   | +                | +                | +                 | +             |
| Hydrogen sulphide, saturated               |               | +                             | +               | +              |               | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   |                     | +                | +                | -                 | +             |
| Soap solution, aqueous solution            | 0             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                |                   | +             |
| Silicone oils                              | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                | +                 | +             |
| Soaa solution, aqueous solution 10%        | 0             |                               |                 |                |               |                 |                  | ~               | +                  | +                    | +               | +                         | +                         |                             | +            | +                                |                     | +                   | +                | +                | +                 |               |
| Eurore                                     | +             | +                             | +               | +              | +             | +               | +                | U               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                |                   | +             |
| Tar                                        | +             |                               | +               |                | +             | +               | +                |                 | +                  | U                    | 0               | T<br>N                    | 0                         | n                           |              | +                                | +                   | +                   | +                | U                |                   |               |
| Carbon tetrachloride                       | +             | •••••                         | <br>+           | +              | <br>+         | +               | <br>0            | _               | +                  | +                    | +               | +                         | -                         | +                           | _            | +                                | 0                   | 0                   | -                | _                | _                 | _             |
| Tetrahydrofurane                           | +             |                               | +               | +              | +             | -               | -                |                 | +                  | 0                    | +               | +                         | +                         | +                           | -            | 0                                | 0                   | 0                   | 0                | 0                | -                 |               |
| Tetralin                                   | +             | ••••••                        | +               | •              | •             | ••••••          | ••••••           | ••••••          | +                  | ••••••               | +               | +                         | +                         | +                           | -            | +                                | 0                   |                     |                  | 0                | -                 |               |
| Toluene                                    | +             | +                             | +               | 0              | -             | -               | 0                | -               | +                  | +                    | +               | +                         | +                         | +                           | -            | 0                                | +                   | 0                   | +                | 0                | -                 |               |
| Transformer oil                            | +             | +                             | +               | +              | •             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           |              | +                                | +                   | +                   | 0                | +                |                   | +             |
| Triethanolamine                            | -             |                               | 0               | 0              |               |                 |                  |                 | +                  | 0                    | +               | +                         | +                         | +                           | -            | +                                | +                   | -                   | +                | +                | +                 |               |
| Trichlorethylene                           | +             | +                             | +               | 0              | -             | -               | -                | -               | +                  | +                    | 0               | 0                         | 0                         | 0                           | -            | -                                | -                   | -                   | 0                | 0                | -                 | -             |
| Vaseline                                   | +             |                               | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | 0                | +                 |               |
| Wax, molten                                | +             | +                             | +               |                | +             | +               |                  |                 | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | 0                | 0                |                   | +             |
| vvater, COIA                               | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | +               | +                         | +                         | +                           | +            | +                                | +                   | +                   | +                | +                | +                 | +             |
| vvuter, Warm                               | -             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | 0               | 0                         | 0                         | 0                           | 0            | -                                | 0                   | -                   | 0                | 0                | +                 | +             |
| nyurogen peroxide, aqueous solution 30%    | -             | 0                             |                 | 0              |               | +               | +                | +               | +                  | 0                    | -               | -                         | _                         | -                           | +            | +                                | -                   | -                   | +                | +                |                   | +             |
| Wine. Brandy                               | +             |                               | +               | +              |               | +               | +                | +               | +                  | +                    | 0               | -                         | -                         | -                           | +            | +                                | +                   | L<br>L              | +                | +                | +                 | +             |
| Tartaric acid                              | +             | +                             | +               |                |               | +               |                  | т.              | +                  | +                    | +               | +                         | +                         | U                           | +            | +                                | 0                   | n                   | +                | +<br>+           | +                 | +             |
| Xylene                                     | +             | ,<br>+                        | +               | +              | _             | 0               | 0                | _               | +                  | ,<br>+               | +               | ·<br>+                    | 0                         | +                           | -            | 0                                | +                   | +                   | -                | -                | -                 | -             |
| Zink chloride, aqueous solution 10%        | +             | +                             | +               | +              | +             | +               | +                | +               | +                  | +                    | 0               | 0                         | 0                         | 0                           | +            | +                                | +                   | -                   | +                | +                | +                 | +             |
| Citric acid, aqueous solution 10%          | +             | +                             | +               | ••••••         | +             | +               | +                | 0               | +                  | +                    | 0               | 0                         | 0                         | 0                           | +            | +                                | 0                   | -                   | +                | +                | +                 | +             |
|                                            |               |                               |                 |                |               |                 |                  |                 |                    |                      |                 |                           | -                         |                             |              |                                  | -                   |                     |                  |                  |                   |               |

### Important notes on the Ensinger product range

You can order semi-finished products with alternative fillers and reinforcing agents and other filler contents than specified (e.g. with bronze, talcum,  $MoS_2$ , graphite, mica, PTFE, PE, wax or silicone oil, etc.).

Colours are also possible. We can naturally also extrude plastics not listed here for you. If no alternative colours are given, Ensinger plastics are produced in their natural colour.

For plates with a thickness from 0,5 to 4 mm and for our materials SINTIMID and TECAST, please refer to the tables for different stock sizes. Extruded heavy wall tubes can be supplied up to 500 mm outside diameter, centrifugally cast polyamide tubes up to 710 mm, compression moulded rings up to 2,070 mm. Other delivery lengths, sections and discs are also available. Please let us have your enquiry. Rods, heavy and thin wall tubes can also be supplied with outside diameters ground to other special dimensions. Intermediate sizes or different tolerances can also be supplied.

Semi-finished product tolerances conform to the following DIN standards: DIN EN 15860.

Our technical terms of supply are based on DIN standards, e.g. DIN EN 15860. Please note that modified materials are not standard and that the tolerances quoted by us should be used as a guide only. We reserve the right to incorporate modifications in line with technical developments.

Publication of this brochure supercedes and invalidates all previous issues. You can find current changes at www.ensinger-online.com.
# Exclusion of liability

Our information and statements do not constitute a promise or guarantee whether expressed or inferred. They are in accordance with the present state of our knowledge and are intended to provide information about our products and the possibilities for their use. Any information supplied is therefore not intended as a legally binding assurance or guarantee of the chemical resistance, the nature of the products or the marketable nature of the goods.

Suitability for the end use of the products is influenced by various factors such as choice of materials, additions to the material, design of shaped parts and tools, and processing or environmental conditions. Unless otherwise indicated, the measured values are guideline values which are based on laboratory tests under standardized conditions. The information provided does not, alone, form any sufficient basis for component or tool design. The decision as to the suitability of a particular material or procedure or a particular component and tool design for a concrete purpose is left exclusively to the customer in question. Suitability for a specific purpose or a particular use is not assured or guaranteed on a legally binding basis, unless we have been informed in writing about the specific purpose and conditions of use and we have confirmed in writing that our product is suitable for this purpose within the conditions notified.

The nature of our products conform to statutory provisions valid in Germany at the time of the transfer of risk, in so far as these statutory provisions contain regulations regarding the nature of these products specifically. The customer must expressly point out in writing that he intends to export our products – after processing or installation if applicable – only then will we confirm the suitability for export expressly in writing and also ensure compliance with the export regulations of the European Union, its member states, the other states who are signatory to the agreement on the European Economic Area (Norway, Iceland, Liechtenstein) and Switzerland and the USA. We are not obliged to take any steps to comply with the statutory regulations of other states.

We are responsible for ensuring that our products are free from any rights or claims by third parties based on commercial or other intellectual property (patents, patented designs, registered designs, authors' rights and other rights). This obligation applies for Germany; it also applies for the other member states of the European Union and the other states who are signatory to the agreement on the European Economic Area and Switzerland and the USA if the customer expressly points out to us in writing that he intends to export our products – after processing or installation if applicable – and we expressly confirm in writing that the products can be exported. We will not accept any liability for states other than those listed.

We reserve the right to make changes to the design or form, deviations in colour and changes to the scope of delivery or service in so far as the changes or deviations are reasonable for the customer whilst taking our interests into account.

Our products are not destined for use in medical and dental implants.

 $\mathsf{PEEK}\text{-}\mathsf{CLASSIX}^\circ$  and  $\mathsf{Invibio}^\circ$  are registered trade marks of  $\mathsf{Invibio}\ \mathsf{Ltd}.$ 

VICTREX® is a registered trademark of Victrex Manufacturing Ltd.

Ensinger<sup>®</sup>, TECA<sup>®</sup>, TECADUR<sup>®</sup>, TECAFLON<sup>®</sup>, TECAFORM<sup>®</sup>, TECAM<sup>®</sup>, TECAMID<sup>®</sup>, TECANAT<sup>®</sup>, TECANVL<sup>®</sup>, TECAPEEK<sup>®</sup>, TECAPET<sup>®</sup>, TECAPRO<sup>®</sup>, TECASINT<sup>®</sup>, TECASON<sup>®</sup>, TECAST<sup>®</sup>, TECATRON<sup>®</sup> are registered trade marks of Ensinger GmbH.

TECATOR® is a registered trade mark of Ensinger Inc.

# General terms of delivery of Ensinger GmbH

#### I. Scope, Rejection of external GDC

1st We provide goods and services solely on the basis of these General Terms of Delivery, no matter whether the case in question is based on a purchase agreement, work agreement or factory supply con-tract or any other contractual relationship. This also applies for future transactions.

2nd We only agree to the inclusion of the General Terms and Conditions of our customers if we have expressly confirmed them in writing.

## II. Technical Documentation, Moulds and Tools

1st If we send the customer technical documenta tion and specifications on our products, such as diagrams or technical drawings, then the customer is only allowed to use these for the purpose we intended and is not permitted to copy or give third parties access to them apart from government authorities and courts. We retain the title and copyright of such documentation. As requested by us the customer has to return them to us immediately free of charge

2nd Providing no alternative agreement has been reached, moulds and any other tools remain our property, even if the customer bears the cost of

#### III. Material provision

If the customer has to provide materials, then these are to be supplied by him on time, at his risk and expense with an appropriate quantity surplus of at least 5% and of a quality suitable for its purpose and specification. If the customer provides too little or defective material or provides it late, then he is responsible for the additional costs resulting from this including those resulting from interruption in production, with the exception of cases of force maieure

#### IV. Confirmation of order

1st The contract is made binding by our confirma tion of order in so far as we confirm the transaction directly, by whatever means, after oral, written or telephonic negotiations and the customer is a commercial entity or, as an independent trader does not only play a minor part in business life and concludes the transaction within the operations of his company.

2nd This does not apply if we could not expect customer's consent or customer objects to our confirmation immediately

#### V. Prices and Price Increases

1st Unless our prices and charges are agreed as fixed on ordering, our prices or remuneration rates shall be those valid on the day of delivery. 2nd Our prices are set ex works and not including VAT. Packaging, transport and other additional services (such as customs clearance) will be charged separately

3rd For subsequent orders we are not bound by price agreements for preceding orders. 4th If part-deliveries are agreed to be delivered within a certain period of time or on certain dates or to be called off by the customer, then once 4 months after placing the order has passed, we reserve the right to increase the price for deliveries in accordance with our current pricing policy. 5th If the order is not executed within a year from it being placed, and this delay is not due to circumstances that are our responsibility, we reserve the right to increase the price with the customer to the same extent and to deliver the goods to complete the order and receive payment for the same

#### VI. Terms of payment, offsetting

1st On complete receipt of payment within 10 days of the invoice date, we will grant a 2% discount on the amount invoiced deducting expenses listed in the invoice (e.g. transport).

2nd If payment is delayed, interest of 5 percent points above the ECB base rate, or if the customer is . a trading company or business, 8 percent point above the ECB base rate, shall be paid on our remuneration This shall not affect our claim for further damages. 3rd We accept bills of exchange and cheques only for payment purposes. The customer bears the cost of discounting and collection. In the case of pay-ment by bill, we will not grant any cash discount. 4th Payments are only effective when the sum of money is finally at our disposal. The customer may only offset undisputed or legally agreed liabilities against payments due to us under this contract

# VII. Performance time, delay, retention, place of

performance, part services 1st Delivery times do not start until we have agreed with the customer on all details of execution and all conditions for the transaction. Delivery times do not begin until the materials and technical documentation to be provided by the customer have been received, including all authorisations, technica specifications and approval by the customer. An agreed delivery date is delayed by the period of time by which these prerequisites are also delayed.

2nd If our services are provided late, we are not dered to be in default as long as the delay is based on circumstances which we could not have predicted or prevented given a reasonable level of care and which we cannot overcome by taking rea sonable measures.

3rd As long as the customer does not fulfil an obligation arising from the business relations, we have the right to defer our performance.

4th If the contract is a commercial transaction for the customer, he may only retain payment for the goods or services if we violate our obligations unde the contract by gross negligence or our services are seriously deficient.

Placement and fulfilment for our perform is the supplier's plant in Nufringen 6th We have the right to partial performance

#### VIII. Bearing the Risk, Dispatch and Receipt

1st The risk for the goods is passed to the customer at the latest on dispatch of the goods to the cus-tomer. This also applies if we bear the transport costs for delivery. We are not obliged to insure the goods against in transit damage. If requested by the customer, we will insure the consignment against theft, transport damage as well as other insurable risks but the customer on placing the order must request this.

2nd If dispatch is delayed for reasons beyond our control, then the risk for the goods is passed to the customer as soon as the goods are ready to dispatch.

3rd The customer is to take delivery of the goods supplied, even if the goods are damaged, without affecting the customers' statutory rights. Defective goods are to be returned to us should we require it

## IX. Transport damage

The customer must give notification of damage caused in transport or losses immediately, or within twenty four hours of receipt of goods, and must leave the consignment for inspection to be viewed as soon as possible. This also applies if the transport damage does not become apparent until the goods are unpacked or at a later date.

## X. Notice of defects and guarantee

1st The customer must notify us of obvious defects in our performance within a week of receipt of the same; if he misses this deadline, our performance shall be deemed to be in accordance with the con tract. If the contract is a commercial transaction for the customer, then Clauses 377, 381 Para. 2 of the Commercial Code shall apply, even if a Quality Assurance Agreement has been concluded with the custome

2nd If our performance is deficient on transfer of either, as we choose, by repairing the defect or by supplying an item free from defects in exchange for the defective item. Replaced parts become our property. If the attempt to meet this obligation fails, the customer may reduce payment to us or, as he chooses, withdraw from the contract. If a defect is maliciously concealed or if a guarantee is under-taken for the properties of the item, the statutory provisions will apply.

3rd We do not take any responsibility for material supplied by the customer or obtained on the basis of specifications laid down by him or for structures specified by the customer. Also excluded is any liabil ity for the suitability of the goods in respect of their intended use on the customer's premises, adherence to safety regulations and material suitability. 4th Any claims on the part of the customer for subsequent fulfilment or for damages expenditure or compensation of expenditure due to defects shall expire, in the case of deliveries, a year from delivery of the goods. If we maliciously conceal the defect or have undertaken a guarantee regarding the proper ties of the item, the statutory provisions will apply 5th If there is a consumer goods purchase on the part of the customer, the statutory provision . will annly

#### XI. Damages and Statutory Limitation

1st If we should default in our performance, then we will compensate the customer the damages due to ordinary occurrences up to the amount of 1% of the price of the relevant goods ordered for every day of default, with a maximum payable by us of 10 % of the total price of the relevant goods ordered. We will pay the full damages in the case of intent or gross negligence

2nd If we have to pay damages compensatio instead of fulfilment, we will repay to the customer the damages occurring on the basis of the rolevant course of affairs up to the total sum of the relevant goods ordered. We will pay the full damages in the case of intent or gross negligence. 3rd Otherwise we are only liable for gross negli-gence or intentional infringement of our obligations This also applies to information provided, advice as well as to unauthorised actions during preparation, conclusion and processing the contract. 4th Our general partner, the managing directors and our employees are liable to the customer for unauthorised actions carried out during preparation conclusion and processing the contract only in the

case of intention or gross negligence. Sth Claims for damages by the customer against us, our directors and our staff arising from the violation of precontractual and contractual obliga-tions and from unauthorised actions committed in the preparation, conclusion and handling of the contract shall lapse a year from the end of the year in which the claim arose and the customer obtained knowledge of the circumstances justifying the claim and the identity of the party liable or should have obtained such knowledge without gross negligence. 6th Any claims by the customer for damages or compensation due to injury to life, body or health based on an intentional or negligent violation of obligations and against the violation of other major obligations which are important by the nature of the contract and for the achievement of the contractual purpose shall remain unaffected in every respect.

### XII. Withdrawal and assignment

1st If we do not render service despite its being due or – with the exception of a defect in our goods or services – do not render service in accordance with the contract, the customer may define a reasonable deadline for such service or for subsequent fulfil ment. The deadline must allow us to complete the service that has already been started; generally, the deadline period may not be less than two weeks. If we nonetheless do not provide the service or subse-quent fulfilment within a reasonable period of time, the customer may withdraw from the contract. This does not apply if the service or fulfilment is not provided due to circumstances beyond our control. 2nd If the asset situation of the customer deteriorates materially, if an application for his insolvency is made or if insolvency proceedings have been started, we are entitled to withdraw from the contract. 3rd. The customer may only assign his rights under this contract without our prior agreement to insurance companies and only in so far as these undertake to pay the damages claimed by the customer. Clause 354 a of the Commercial Code remains

#### XIII. Security

ithstanding delivery the property in the Goods shall not pass to the Buyer until the Buye has naid in full the price of the Goods and all out standing claims in connection with the business relationship.

2nd Processing or working with the reserved prop erty by the customer takes place free of charge for us without it resulting in any obligations for us; the new object becomes our property. If the goods are processed with other goods which do not belong t the customer, then we acquire co-ownership of th new object in the ratio of the value of the reserved property to the value of the other goods; in the case of mixing, combining or blending we acquire co-ownership according to legal provisions. If the customer acquires sole ownership through mixing, combining or blending, then he already transfers co-ownership to us now in the ratio of the value of the reserved property to the value of the other goods at the time of the mixing, combining or blending. In the above mentioned cases, the customer has to keep in safe custody and free of charge the objects which we are owners or co-owners of which are also reserved property in the sense of the following nrovisions

3rd The customer already assigns to us claim arising from resale of the reserved property to the value of the reserved goods with all ancillary rights The corresponding applies if the reserved property is installed into the property of a third party as a key component. If we retain title to the reserved goods then the claims are assigned to the amount that corresponds to the value of our share of the overall value. The assignment of future claims also covers a nossible balance claim from the current account The customer is authorised to collect the clair 4th As long as the customer does not default in his obligations to us, he has the right to avail hims of the reserved property in the ordinary course of business and under retention of title, providing the claims according to fig. XI.3 are effectively transferred. Extraordinary dispositions, such as pledges chattel mortgage and any assignments are not permitted. We must immediately be informed of access of third parties to the reserved property or assigned claims, in particular pledges. 5th If the customer is in default of a payment due

to us for longer than a week or if he undergoes forfeiture of assets, where he in particular ceases payment, our claims shall become payable immediately and any deferment of payment ends. In these cases, we are entitled to take the retention goods and to revoke the collection authorisation. The customer is – with rights of retention excluded – obliged to return same. If the customer is a consumer, he only has to return the retained goods

consu

to us if we have withdrawn from the contract. The acceptance and seizure of the retained goods by us shall not be considered as a withdrawal from the contract. except in consumer credit transactions All the costs of the recovery and realisation shall be borne by the customer; we are entitled to sell the goods in the open market. Upon request, the customer shall provide us immediately with a list of the liabilities assigned to us according to Fig. 3 and shall give us all further information and docu inal give as an other momentation and occurrent necessary to apply our rights and notify the party liable of the assignment. 6th We undertake to release securities as we

choose if the realisable value exceeds the total of our claims under the business arrangement by more than 15 %

7th If the retention of title or the assignment is not legally effective according to the laws of the country which the goods are in, then the security which comes as close as nossible to the retention of title or assignment is considered to be agreed, if according to this the cooperation of the customer is required, then he has to undertake all legal transac tions necessary to establish and retain such rights

#### XIV. Proprietary rights

If we have to render service on the basis of draw-ings, models, samples or using parts provided by the customer, the customer herewith states that this shall not violate the statutory rights of third parties. The customer releases us from any claims by third parties due to the violation of any rights and will erimburse us any damages arising and our costs and expenses. If the customer and/or we are forbidden to manufacture or deliver by a third party with reference to a proprietary right, we are entitled, without closer examination of the legal position, to cease the works.

Version: July 2013

#### XV. Leaal system and leaal venue

Ist If any provision of these conditions and the further agreements reached are or become invalid this shall not affect the validity of the remaining conditions. The contract partners are obliged to replace the invalid provision by a provision that comes as close as possible to it in terms of commercial success

2nd German law shall apply excluding Collision Law and the United Nations Agreement on contracts for the international sale of goods (CISC). 3rd If the customer is a commercial entity, legal entity in public law or a special fund under public law, then Nufringen is the legal venue for all dis-putes arising directly or indirectly from contractu relationships based on these General Terms of Delivery. For legal action against the customer, the court at the customer's registered offices is also competent locally.

Version: June 2013

## Ensinger Germany

Ensinger GmbH Rudolf-Diesel-Str. 8 71154 Nufringen Tel. +49 7032 819 0 Fax +49 7032 819 100 www.ensinger-online.com

Ensinger GmbH Mercedesstr. 21 72108 Rottenburg a. N. Tel. +49 7457 9467 100 www.ensinger-online.com

Ensinger GmbH Wilfried-Ensinger-Str. 1 93413 Cham Tel. +49 9971 396 0 www.ensinger-online.com

Ensinger GmbH Borsigstr. 7 59609 Anröchte Tel. +49 2947 9722 0 www.ensinger-online.com

Ensinger GmbH Mooswiesen 13 88214 Ravensburg Tel. +49 751 35452 0 www.thermix.de

## Ensinger worldwide

Austria Ensinger Sintimid GmbH Werkstr. 3 4860 Lenzing Tel. +43 7672 7012800 www.ensinger-sintimid.at

## Brazil

Ensinger Indústria de Plásticos Técnicos Ltda. Av. São Borja 3185 93.032-000 São Leopoldo-RS Tel. +55 51 35798800 www.ensinger.com.br

# China

Ensinger (China) Co., Ltd. 1F, Building A3 No. 1528 Gumei Road Shanghai 200233 Tel. +86 21 52285111 www.ensinger-china.com

# Czech Republic

Ensinger s.r.o. Prùmyslová 991 P.O. Box 15 33441 Dobřany Tel. +420 37 7972056 www.ensinger.cz

## Denmark

Ensinger Danmark A/S Rugvænget 6B 4100 Ringsted Tel. +45 7810 4410 www.ensinger.dk

#### France

Ensinger France S.A.R.L. ZAC les Batterses ZI Nord 01700 Beynost Tel. +33 4 78554574 www.ensinger.fr Ensinger GmbH Rudolf-Diesel-Straße 8

Germany

71154 Nufringen Tel. +49 7032 819 0 www.ensinger-online.com

## India Ensinger India Engineering Plastics Private Ltd. R.K Plaza, Survey No. 206/3 Plot No. 17, Lohgaon, Viman Nagar 411 014 Pune Tel. +91 20 2674 1033 www.ensinger.in

Italy Ensinger Italia S.r.l. Via Franco Tosi 1/3 20020 Olcella di Busto Garolfo (MI) Tel. +39 0331 562111

## Japan

www.ensinger.it

Ensinger Japan Co., Ltd. 3-5-1, Rinkaicho, Edogawa-ku, Tokyo 134-0086, Japan Tel. +81 3 5878 1903 www.ensinger.jp

## Poland

Ensinger Polska Sp. z o.o. ul. Geodetów 2 64-100 Leszno Tel. +48 65 5295810 www.ensinger.pl

## Singapore

Ensinger Asia Holding Pte Ltd. 63 Hillview Avenue # 04-07 Lam Soon Industrial Building Singapore 669569 Tel. +65 65524177 www.ensinger.com.sg

## Spain

Ensinger S.A. Girona, 21-27 08120 La Llagosta Barcelona Tel. +34 93 5745726 www.ensinger.es

## Sweden

Ensinger Sweden AB Stenvretsgatan 5 SE-749 40 Enköping Tel. +46 171 477 050 www.ensinger.se

## Taiwan

Ensinger Asia Holding Pte Ltd. 1F, No.28, Keda 1st Rd. Zhubei City Hsinchu County 302 Tel. +886 3 6570185 www.ensinger.asia/tw

## United Kingdom

Ensinger Limited Wilfried Way Tonyrefail Mid Glamorgan CF39 8JQ Tel. +44 1443 678400 www.ensinger.co.uk

# USA

Ensinger Inc. 365 Meadowlands Boulevard Washington, PA 15301 Tel. +1 724 746 6050 www.ensinger-inc.com



Thermoplastic engineering and high-performance plastics from Ensinger are used in every important sector of industry today. Their economy and performance benefits have seen them frequently supplant classically used materials.

